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EVALUATION

This effort continues the successful development of a software proof of

correctness system started under F30602—75—C—0042, the Rugged Programming

Environment. Where this first effort proved the feasibility of applying

the proof of correctness concept to a JOVIAL—like Higher Order Language ,

the current effort applied it to essentially the whole JOVIAL (JOCIT)

language. And in doing so, SRI, the contractor , increased the working

efficiency , flexibility, and usability by their software rewrite and inclusion

of philosophical and user oriented features. These factors, together with

the movement of the rewritten files to the RADC Multics System (which was

done beyond the intended scope of the statement of work) now allows access-

ibility to two sources, the SRI TENEX system and the RADC Multics system ,

for the serious user to attempt verification of his JOVIAL programs . While

the system is yet to be simplified so that the general programmer can

conveniently access it , it is a major tool for inclusion in the Disciplined

Programming Environment being developed under RAD C ’.-s Software Cost Reduction

Program.

JO H ~’M .  IVES , Captain , USAF
~~~~~~~~~~~~~~ Engineer

• 1  vi i  

—--—~~~ ~~•-. .- -— -—- — ,V~~



I INTRODUCTION AND CONCLUSION S

This report describes our second year of research and development effort

aimed at making formal proof of program correctness by means of inductive

assertions a practical technique for JOVIAL programming . During the first

year (September 197~4 — October 1975), we developed a pilot system——the Rugged

Programming Environment (RPE/1) , written in INTERLISP , capable of formally

verifying small programs written in a limited subset of JOVIAL. Having

demonstrated the feasibility of proving correctness for a limited subset of

JOVIAL programs, we set out in April 1976 to extend the power , utility, and

general capabilities of our verifier in several directions.

The RPE/1 and RPE/2 verifiers have much the same overall structure.

Both versions employ the method of correctness proof by inductive assertions.

There are three major subsystems,

* Parser/transducer

* Ver if icat ion condit ion generator
* Deductive system

The parser/transducer and verification condition generator together

constitute the input processor of the verification system . The RPE/2

parser/transducer accepts a JOCIT program (annotated with input/out put

specifications and inductive assertions) from a text file , parses it , and

saves the parsed version on a new file. The purpose of the verification

condition generator (VCG) is to analyze this parsed form of the program ,

thereby creating a Set of formulas in first—order predicate calculus whose

valdity is a sufficient condition for consistency of the program ~~th ~ts

specifications. The parser incorporates a complete syntactic

cha racterization of JOCIT , while the VCG embodies knowledge of JOCIT

semantics in order to generate the verification conditions (VC~ ).

1 
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The deductive system carries Out the actual proof of validity of VCs

under user guidance, making use of several subsystems for performing special

kinds of deductive inference. The top—level of the deductive system , with

which the user interacts , is a proof supervisor executive based on the method
of analytic tableaux [16). This Tableaux Executive also provides for the

display of th e dynam ic proof state, maintains an audit tra il for fut ure
examination of the details of the proof, and can save partial proofs for

future completion. VCs that are propositionally valid are handled entirely

by the tableaux executive acting in a completely automatic mode. Formulas

involving logical quantifiers are either handled automatically by the

ta bleaux system , or by user—supplied instantiation . A mechanism is also

provided in the Tableaux Proof System for t he invocat ion of ax ioms or
previousl y prov ed formulas , with instantiations of free variables supplied by

the system user. Formulas whose validity depends on the interpretation of’

equality/inequality relations, algebraic operations, or funct ion symbols can
be demonstrated by user invocation of either (a), a specialized decision

mechanism for an extension of Presburger arithmetic , or ( b ) ,  an expression

simplifier for algebraic formulas which need not be limited to Presburger

arithmetic. The Presburger mechanism also constructs concrete numerical

counterexamples for invalid formulas. Both subsystems (a) and (b) are

essent ially automat ic , once they have been invoked by the user through the

Tableaux Executive.

Communication between the three major subsystems of the verifier takes

place by the creat ion an d reading of f iles, i.e., the original JOCIT program

to be verified , the parsed form of the program , and the VCs for that program .

Our efforts were devoted to four major tasks, which may be summarized as

follows :

* Task A — Modify the input processor to handle as much as
possible of JOVIAL (JOCIT version).

* Task B — Increase the overall speed of verification by at least
a factor of 2 , and if possible by a factor of 5.

a Task C — Greatly enhance the ease of user interaction with the
system by developing facilities for carrying Out and saving
partial proofs of programs, for extending the assertion
language , and for enabling top—down/bottom-up proofs for well—
structur ed programs.

2 
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* Task D — Begin transfer of our verification technology to the
Air Force by implementing enoug h of the verification system on
the RADC —MULT1CS compuLer to permit verification of a simple
program entirely on that machine.

The structure of this report reflects these tasks : the next four

sections deal with the issues involved in meeting the respective requirements

of the four tasks.

The main accomplishments of this project have been :

* The extension of program verification techniques for the first
time to a large, fairly complex , real programming language in
wide current use , and the demonstration of their feasibility .n
that domain.

* The development of an extremely flexible deductive system that ,
without compromising generality or processing speed , is able to
handle user—guided hierarchical proofs of correctness , has
facilities for saving and reentering partial proofs , and is
easily integrated with special—purpose deduction modules.

a The development and implementation of a new , efficient algorithm
for deciding validity for a large class of mathematical
formulas. (The formulas are in an extension of universa l
Presburger arithmetic , described in Section III , Subsection C.)
This algorithm also constructs numerical counterexamples for
invalid formulas supplied to it.

Section II describes the modification of the parser/transducer to

accommodate JOCIT syntax (except for ce r t a in  implementa t ion-dependent
f ea tu re s) ,  and the extension of the verification condition generator to

handle the semant ics  of a l l  fea tures  s p e c i f i c a l ly r equ~.red by the Work
Statement  as wel l as a good many others.

Section Ill deals  wi th  the modi f i ca t ions  we made to increase the speed
of verification , both in the machine time and the user time required . it

also presents some measurements of the time required for each of the phases

of verification. An overall speedup by a factor of approximately 27 compared

to the RPE/1 system very amply ful filled the goal of Task B.

Section IV describes the interactive features tha t have been added to

the system . Most of these are concerned w~.th user ln tt -ract :on n th~
deductive system . The RPE/1 system attempted to use a Set of automat .call y

invoked , fixed deductive strategies incorporated in a “goal—dr iven ” deductive

3
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system . That system turned out to be both extremely slow and cumbersome for

al l  but the simplest deductions. It was also incapable of handling logical
quant i f ie rs  or of ins tant ia t ing axioms (except those bu i l t—in  as procedural
stra tegies) .  The RPE/2 deductive system is based on the met hod of ana ly t ic
tablea ux ( q . v .  Section IV , Subsection B) and eliminated many deficiencies of
i ts  predecessor. A simpler version of analytic tableaux had been implemented
under RPE/1 , but it had not been integrated with other deduction tools. Most
of the increase in speed of user interaction with the system was due to this

improved tableaux facility. Another aspect of user interaction discussed in

Section IV is the user facilities associated with procedural abstraction and

the carrying out of top—down (or bottom—up) proofs for suitably structured

programs.

Finally,  Section V describes the Steps that led to the carrying out of a .4

sample verification on the RA DC—MIJLTICS Honeywell 6180 computer . This

required rewriting the system in MACLISP, transf err ing system files to RADC —
MULTICS , and actually demonstrating the system. This section of the report

also includes a detailed discussion of some supporting software (developed in

part under this contract) that greatly facilitated the actual translation

process——so much so that it became feasible to translate the final RPE/2

system , instead of simply the much more primitive RPE/1 version.

Appendix A shows a detailed BNF grammar for JOCIT developed in 
V

connection with Task A.

Appendix B is a glossary of the deductive system including the commands

tha t the user can issue and the parameters that the user can set.

Appenoix C details a verification run at RA DC—MULTICS.

The two years we have devoted to the development of practical

verification tools for JOVIAL have led us to the following conclusions:

* Program verification continues to be a promising technique
which , when used in conjunction with modern structured design
and formal specification methodologies, will ultimately reduce
the cost of developing and maintaining Air Force software
syst ems.

• Program verif icat ion is applicable to complex real-world
languages suc h as JOVIAL.  The assoc iated problems of applying 

.~~~ V~~~~_  --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~



verification to such languages——the development of supporting
parsers and verification condition generators——can be solved in
straightforward ways with existing technology. It is also
straightforward to use languages such as JOVIAL harmoniously
with formal design disciplines such as the SRI Hierarchical
Methodolog~’ [13).

* The bottleneck in developing an automatic verification
technology is the development of more potent deductive
mechanisms than are currently available. A related problem area
is the difficulty of inventing the inductive assertions required
for correctness proofs. The development of more powerful
deduction tools will do much to overcome this problem . This
area has great promise and potential but urgently needs further
attention.

• Given the lack of a competent automatic deduction system for the
mathematics of computer programs, the use of verification
technology in practice requires the development Df semiautomatic

V deductive facilities. The user interface of such facilities
must be carefully engineered to permit flexible and informed
user control over the myriad details of program theorem proving .
The Tableaux Proof System is a major step toward such
facilities.

Consequen t ly ,  we hope to continue our efforts in three major areas.

First , we will expand the deductive facilities of the system. In particular ,

we will increase the sophistication of our techniques for superv .sing

interactive proofs , enhance the power of the automatic deductive mechanisms

in areas such as quantification , nonlinear arithmetic (q.v. Section Ill ,

Subsection C), and canonical form rewriting systems.

Second , we will couple modern design techniques such as [13) and [9]

with our verification system . This will involve developing a superset of the

JOC1T language allowing the implementation of programs with hierarchical and
modular structure . We intend to describe how advanced design tools under

development at SRI , such as [ 14 ] ,  can be applied to this superset language to

provide a coherent environment for designing verifiable modular programs.

Third , we intend to tune and make robust all aspects of user interaction

with the system to maximize ease of use. A major design criterion will be to

develop a system that can be widely used outside of SRI.

S
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II MODIFICATIONS TO THE INPUT PROCESSOR

A.  In t roduction

Task A , Item ~.1 .1 of our Statement of Work called for the following

eff ort :

The contractor shall modify the current input processor from
the ability to handle programs written in the JOVIAL J3/J73 subset
defined under contract F30 6 02— 75—C— 0042 to handle , in the greatest
extent  possible , the complete JOVIAL (J 3 ) .  The following features ,
among others yet to be accommodated are the file— and table—
declarat ions , the ‘alt ernat ive’, ‘exchange ’, an d ‘return ’

~tatementa , file I/O operations, an d multiple entry poin ts on
procedures.

The ~.n put processor of our verification system comprises two successive

stages of processing :

Parsing and Transduction
a Verif icat ion Condition Generation (VCG )

The first is concerned only with the  syntact ic  recognition of JOVIAL V

constructs , while the VCG stage makes use of the semantic aspects of JOVIAL.

In Section II, Subsec tion B , we disc uss the modification of the

parser/transd ucer to fulfill the requirements of item 4.1.1. Section II,

Subsection C describes the cha nges made to the verification condition

ger.erator to handle the features listed as well as others. This subsection

also points out ambiguities in the JOCIT language definition [3] that were

made a pparent by our efforts.

6
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B. .I~~ Parser/Transducer

The first  step was to define precisely the version of JOVIAL (J3)  to be

accommodated by the input processor . Our effor t  was based on the JOCIT

version of JOVIAL , as documented in [3] . This document was , therefore , used

for the definition of JOCIT syntax and semantics.

In the next three subsections we discuss, in turn , construction of a

formal grammar for JOCIT , the building of a parser/transducer by means of a

parser—generator, and how to use the parser—transducer on JOCIT programs.

1 . Gr ammar Construct ion

Our previous parser/transducer used the Earley algorithm [5], and

was based on a syntactic description of a subset of J3/J73 in the form of

modified BNF syntax equations [7]. In the new version we propos d to make

use of a much more efficient parsing algorithm , effective with SLR grammars

(see [4)), to meet the requirements of Task B. A detailed discussion of

parser techniques and their speed capabilities appears in Section III of this

report. The next step was to express the syntactic constraints of JOC1T in

the form of BNF equations that would form an SLR(1) grammar . SLR (1) was

chosen for reasons of parsing efficiency.

We first rewrote the semiformal descriptions presented in [3] as

strict BNF equations , subsuming nonterminals under common forms when

necessary or convenient. The resulting formal grammar for JOCIT appears in

Appendix A. The highly readable form in which the grammar ls shown there was

produced by a grammar display package due to 0. Roubine of the SRI Computer

Science Laboratory staff. This package , developed under another DoD
contract , is available on file [SRI—KLJ<ROIJBINE>SHOWGRAMMA R .COM . We should

note tha t this grammar covers all of JOCIT as defined in [3] with the

following 3./stem—dependent exceptions:

• MONITOR
a Direct JOVIAL code (inc luding direct:assign)

* COM POOL
• MODE directive

* DEFINE directiv e

7
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Several passes over the grammar were required to achieve this final form

because it is usually not apparent whether a grammar is SLR(1). In fact, the

beet test for the SLR(1) property is to submit the grammar to an SLR(1)

parser—generator. Three or four such design passes were required for the

JOCIT grammar ; minor modifications to the grammar were made whenever

conflicts were discovered .

2. Using 
~~~ Parser Generator

Our parser—generator has three phases: the first and third are

implemented in INTERLISP and the second in ECL. The first phase prepares,

from Lisp data structures, the input to the second phase, which is an SLR

* 
parser system developed at Harvard by Griffiths, Shostak and Townley and

implemented in ECL. (10]. The tables produced by ECL are then processed by
r the final INTERLISP phase, which converts them into INTERLISP or MACLISP code

and combines the result with user specified tranaductions and lexical

analysis routines to produce the final parser. Here is a diagram that

describes this process:

• INTERLISP Grammar File
—-——is transformed by Phase 1 to >

ECL—Readable Grammar Files
———— which are transformed by Phase 2 to———>

ECL—Produced SLR Parse Tables
——-—wh ich are transformed by Phase 3 to———> V

INTERLISP or MACLISP Parser

Figure 1. Parser Generation

Com piled code for this parser—generator is stored in [SRI—

KL]<ROUBINE>INTERPG.COM. In addition to the grammar , the parser—generator

takes as input a description of the lexical tokens of JOCIT, from which a

finite state lexical analyzer is synthesized to build input for the parser.

The purpose of the parser/transducer is not merely to parse the subject JOCIT

program but also to output a transduced version of the program as a Lisp data

structure. This parse is the input for the second phase (VCG ) of the input

processor. The data structt’re that contains the formal grammar also provides

transduction augments for each nonterminal of the language. These augments

are user—supplied and define the structures of tranaductions produced by the

parser.



The construction of the parser begins with load ing the parser—
generator into INTERLISP by calling:

..J OAD(<ROUBINE>INTERPG .Cc44)

Several explanatory messages are typed out at the user ’s terminal.
If the file (JOCIT $) conta ining the grammar is ready, the user proceeds
according to the instructions; if, on the other hand , there have been changes
in the grammar file since the last construction of a parser , one must invoke
the ECL program that rebuilds the grammar file by calling ( from within
INTERPG.COM):

(JOCIT )

This action loads the file JOCIT$ (containing the grammar,

transduotions, and lexical analyzer description) into the environment. If

the user then responds with “YES” to a query asking whether ECL should build

new tables, ECLPR will perform that action .

Before we continue our description of the user actions needed to

construct the lexical analyzer portion of the parser, we digress briefly to

make some general remarks about its design and function. The finite—state

machine that actually performs lexical analysis during parsing is itself

synthesized by the parser—generator from a data struct ure specifying the

lexical level of the grammar. This particular data struct ure , FSM , was hand—

designed by analyzing the various ways we may validly combine individua l

characters to produce JOCIT lex emes , such as integers , fixed—point ntm~bers ,

floating—point numbers , JOCIT names , octal constants , character constants,

status constants , special one—character lex emes ($, I, A , S, U, P, V, R,

etc .) ,  and special two—character lex esies ( * , ($, $), (* , *) , and :).

The resulting finite—state mac hine specification had ~8 states ,

with 31 terminal states. It is shown diagrammatically in Figure 2, and
resides in the grammar file JOCIT$ as the binding of the Lisp variable FSM .

9
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Figure 2. Finite State Machine Lexical Analyzer
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KEY: 1. 30 is the initial state.

2. Boldface indicates final states.

3. Lexemea aesociated with final states are:

S2, S13, 325 FLOATING\CONSTA NT
S5 FIXED\CONSTANT
S b  RANGE\PRFX
Sin , S20, SJ1~4 LETTER
Si? OCTAL\INTEGER
s18 NAME
S19 NAMEDO T
S23 STATUS\CONSTANT

DECIMA L\INTEGE R
CHA RACTER\CONSTANT

332 $
S33 5)
S314 /
S35
S36
S37 a)
338 (
S39 (a
sI(0 (I

Cs
S42
S~l3S~5 RIGHT\PAD
S46 ILLEGAL.:LEXEME
S~ê7

The meanings of the transition predicates are:

separatorp any separator character, i.e. space, liriefeed,
carriage return , fore feed , or eol

aiphap any alphabetic character
digitp any digit
alphadigitp any alphabetic character or digit
notrparenp any character other than ‘) ‘
errorp any character which is illegal as the initial

character of a JOCIT lexeme, I.e. any
character not an alphabetic , a digit, a
RIGHT\PAD (which indicates end—of—file on
parser input), a separator, or one of :, .~~

(, 5, I, or a. 
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The actua l construction of the lexical analyzer is ca r r i e d  out

m e c h a n i c a l l y  in JOCIT$ by c a l l i n g  the f u n c t i o n  MAK E .NEXTTYPE.  This ac t i o n

creates a function definition for an INTE~L1SP function , NEX T T YPE , which is

the lexical analyzer portion of the parser. Also created at the same time by

MAKE .NEXTTYPE is a function (another part of the lexical analyzer ) called

BEGJNCHECK. BEG1NCHECK assembles alphabetical tokens and also , by means of

buffering and look—ahead , distinguishes two uses of BEGiN in the JOC1T

grammar that are not distinguished by our SLR (1) grammar. We had to provide

this feature in  order to make the grammar parseable with SLH (1) techniques.

The construction of the lexical analyzer also uses a description of the fina l

states of the finite state machine which is given in the variable

F 1NAL STATES . F 1NALST ATES is a l is t  of t r ip les, where the f i r s t  member of

each triple is the state name (e . g . ,  S 1 7) ;  the second member is the  generic

state name (e.g., octal\integer); and the third member is the particular Lisp

function used to pack the characters together to make that kind of token .

Examples of these “packing” functions are NCONCAT , BEG1NCI-IECK , and STATE.

in operation , the lexical anal yzer works as follows :

1 . A f u n c t i o n  PEEKBUF in the ana l yzer reads a cha rac te r  from the
f i l e  being parsed , arid places it in to  a BUFFER.

2. Ano the r  lexical  analyzer  funct ion NXTCHR reads  the  cha rac t e r
into a second buffer , called INPUTS2.

3. Characters are eventually read into a third buffer , iNPUTS ,
from which they are packed into accepted lexemes by one or another
of the “packing ” functions named above.

The extra buffers are needed because the lexical analyzer is always trying to

recognize as a legal token the longest possible string of conSecutive

characters. If, for example , the string ABCDE is being r ead , where ABC , and
ABCD both determine legal final states but ABCDE is illegal , then everitu~lly

ABCD f i ne s  i t s  way iritc iNPUTS but E remains in iNPUT~2 to be placed b ack ~.n

the  BUFFER be fore  recogni t ion  of t he  next.  lexeme .

The p a r s e r — g e n e rat o r  f i n i s h e s  by w r i t i ng  a f i l e  c o nt a in i n g  t h e

synthesized parser. The user may choose to create either an lNTERL~SP cr a

MACLISP parser. ~e wanted to con struct a MACL lS1~ parser so tha t o’~r wholi~
system would be able to run in the M~CLASP environmen t available on the RA DC—

11
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MULT1CS computer. The file containing our parser/transducer is called

JMAC .MAC , and it is direct ly  loadable into any MACLISP environment.

The principal function of our parser is called JMAC. Its use is

described in the nex t subsection .

3. ~~~ ~1 tk~ Parser/Transducer~

In order to use a parser/ t ransducer  synthesized by the above

parser-generator , one must first have available a text file containing a

JOCIT program to be parsed . Suppose that  suc h a JOC IT program is on a f i le

called “testprog.joc” . One f irst  loads the synthesized pa rser on top of a
MACLISP environmen t ( containing our function l ib rary)  by typing ‘(b load m a c
mac ) ’ . At MULTICS the corresponding command is ‘( load “j m ac .mac ” ) ’ .

The user should follow the steps shown below . First , init ial ize
the parser by calling :

( jm acinitialize )

Next , apply the parser/ transducer to the selected fi le (ta king care to save

the result on a Lisp variable , say “ parse ” ) ,  by typing :
(setq parse ( jm ac ‘(testprog joc ) 0 ) )

When parsing is completed , the transduced program is typed out at the

te rmina l .  The user will usually wish to save the result of parsing on a
Maclisp—loadab le f i le,  in our system this can be done by setting , say
testvar s , to ‘(pa r se ) ,  and calling (mf i l e  tes t) .  This makes a f i le  wi th  the
binding of parse saved on i t .

When the parser aborts because of a syntax error in the JOCIT text
fi l e , an error message indicates the f i rs t  illegal lexeme detected . The

INTE RLI SP parser/transducer has interactive debugging aids that assist the

user in correcting the error. (Unfortunately, the I/O and tex t editor

features of MACLISP do not permit that flexibility. However , one may obtain

the similar data by tracing the function BEGINCHECK and reexecuting the

parse.)

12 
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C. V er i f i c a t i on  Condit ion  Generator

1. introduction

The semantic description of JOC1T used by our system is embodied ~n

the second part of the input processor——its Verification Condition Generator

(VCG). The VCG design is based on the same document [3] as the input

transducer. The only difference is that while the syntactic description of

JOCIT in [3] is in the form of BNF syntax equations , the semantic

description is in natura l language. As always with natura l language

specifications , the possibility of misinterpretation cannot be dismissed .

Moreover , some aspects of JOCIT are inherently undefined , or they are

dependent on the machine implementation . Examples of such incomp letely

specified aspects of JOCIT semantics are the following:

* The order of evaluation of subexpressions; see [3], p. 3—13 ,
a Transfer of control into a FOR statement; see [3] ,  p. 1~_21 ,

and

* Evalua t ion of a switc h tha t involv es a func t ion  ca l l  w h i c h
reinvokes the same switch; [31 , p. ~4— 7.

We hope that the predicate transformer specifications given below are

sufficiently unambiguous to be checked by JOCIT compiler experts.

The basic purpose of the VCG is to map a JOC1T program--together

with formal specifications—-into a set of logical formulas expressing the

necessary and sufficient conditions for consistency between the program text

arid the  spec i f i c a t i ons .  The VCG operates wi th  p red ica te  t r a ns f o r m e r s  on the

abstract version of the program to be verified . The basic predicate

t r ans fo rmer  is realized by a func t ion  WP ( s tan d i n g  for “ wea kest

precondition ”) tha t computes the weakest liberal precondition P for each pair

(S ,Q) where S is an executable JOCIT statement (or declaration) and Q is a

logical assertion. P is said to be the “weakest liberal precond ition fcr

(5,0)” if the truth of P before executing S implies that C will hold after

executing S, provided S terminates. The use of l iberal  precondit ion s r e t h er
than strong precond i t i ons  r e f l e c t s  the  intent to prove partial correctness.

Proofs of termination are carried out independentl y.

13 
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The verification condition generator has at its top level a user—

invok ed funct ion , VCG , which takes as its single argument a Lisp variable

bound to the (abstract) main program text for which VCs are to be computed .

The parser/transducer will have produced the abstract program from an

annotated JOCIT program . For example , the Lisp variable might be called

MAIN. To compute VCs for MAIN , th e user ty pes in:
(VCG MAIN )

and the result of this invocation of VCG will be to bind a new Lisp variable ,

MAIN a, to a computed list of VCs for MA IN. In addition , any sub programs ,
procedures , functions, or closed subroutines contained within MAIN will be

identified and analyzed , and their VCs computed , as explained below . In each

case , the VCs are bound to the Lisp variable formed by appending the

character * to the name of that particular subentity.

For each control path lying between successive assertion points in

the main program , the function VCG computes a formula (VC) in predicate

calculus expressing a condition of correctness for that path. Let the

program text between successive assertions p and q be denoted by (SI. We

represent the tagged path by p{SIq. The VC for path p (S}q is given by:

p implies WP[S; qi

VCG systematically considers the whole main program supplied to it

and delivers as its result a list of such VCs——one for each elementary path

between assertions. The function VCG does this by beginning with the main

program ’s Output assertion and applying the predicate transformer WP

successively to program statements preceding that assertion until some point

with an attached assertion p is reached . At that point , a single path VC

will have been constructed , arid a free variable called “VCS” (local to VCG)

starts to accumulate such VCs. Construction of the next path VC is

initiated , with the assertion p now playing the role of the output assertion .

This process continues until all assertion points have been traversed and the

ma in program input assertion attained . The last path VC to be constructed

is , therefore , the VC for the initial path segment lying between the input

assertion and the first assertion point. The list of VCs accumulated on the

Lisp variable VCS is assigned to the external output variable MAiN ’, an

1z~
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appropriate message is printed out on the user ’s terminal , and VCG ~s

completed .

The next subsection contains brief discussions of how WP acts on

each of the types of statements that were present in the RPE/1 subset of

JOVIAL. The subsection following that describes in detail the action of WP

for features of JOCIT that were added during the present phase . Most readers

will prefer , at least on a first reading of this report , to omit these two

highly detailed subsections and proceed to Section lii.

2. Basic Featur.e.s ~~ ~~~ fre.condition Ooerator .~‘iE
Tt ~ primitive statement types handled by WP in the RPE/1 system

Were:

* assignmen t (to simple variables)

* assignment (to  arrays )

* simple conditional statemen t

* compound statement

* iterative statement (a do—while type of statement from J73)

We shall need to refer both to JOCIT statements and their transduced

(abstract) counterparts. To make this correspondence obvious , we introduce

the m e t al in gu i s t i c  convent ion tha t form ’ shal l  s tand for the  t r ansduc t ion  of

the JOC1T expression (statement , declaration , or other expression)

represented by form .

For each of the these five statement types , we exhibit below the

following information :

a The JOCIT syntax for s (q.v. Appendix A)

‘ The abstract syntax s’

* The definition of WP[s;q]

(a) Let simple :asst be the JOCIT statement:

lhs = rhs $

[In abstract syntax : simple :asst’ = ( :=  lhs ’ rhs ’)I

WP [simple:asst ’;q ’] = the result of sub stitut i ng rhs ’
frr each (free) occurrence of lbs ’

~ni q ’ .
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(b) Let array:asst be the JOC1T a~ signment to a component of an

array (possibly multi—dimensional):

ar ray : re f  = rhs $

[In abs t rac t  syn tax :

a r r ay :a s s t’  (:= (name ’ index—list) rhs ’)

where ind ex—list (SUBSCRIPTS . <a—list--of—indices>)]

Then WP {array:asst’ ; q ’] =

WP[ (:= name’ (CHANGE name ’ index—list rhs’)); q ’]
Thus WP for array assignments is handled by applying WP for simple—variable

assignments to a virtua l simple variable having as its name the array name.

This feature appeared in much the same form in the RPE/1 System .

(c) Let cond:sta t be the JOCIT sU tement:

IF bcol $ stat

[ In  abstract syntax: cond:stat’ = (JF hool’ stat’))

WP[cond:stat’ ; q ’] =

(AND (IMPLIES bool’ (WP stat’ q’))
(IMPLIES (NOT bool’) q’))

This is identical to the corresponding feature in RPE/1 .

(d) Let compd:stat be the JOCIT statement:

BEGIN stat. 1 stat2 . . . st~ t ri END

[Ncte: each stati contains its own $ terminator)

[In abstrac t syn t ax :

compd :stat’ = (BEGIN st.~ t 1’ stat2’ . . statn ’))
The sementic~ are g~veri recursiv~’ly by :

WP[cocap~i:stat’ ;q ’)

WF [stat l ’ ; WP1 (BEGIN stat2’ sti t3’ . . . )  ; q ’ ) ]

(e) Next , we desc r~ tt. the  :t .e ra t ion  s t a t e m e n t .  We have  augmeni t~ d

the  .JUCIi r~~u.~~e here  by add ing  an assertion. This assertion is

synt a—ti c .~l1 y optional but requ~ red for ver~ f~cation. Th~ JOCIT syntax is:

FOR i a , b , c (ASSERT boofl $ stat

16
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and the corresponding abstract form is:

(FOR i ((ASSERT bool’) (a’ b’ c’)) stat’).

If the optional assertion is Omitted the transducer supplies a vacuous

assertion clause , (ASSERT T). Here i stands for any single—character control

index , and a, b , c represent any numeric (integer—type ) expressions. This

syntax differs from that of the Iterative statemen t type In BPE/1——a while—

do/do—until form derived from J73 . See [7) for details of VCG for the RPE/1

iterative statement. We discuss here only the features that had to be added

to the RPE/2 VCG to handle the JOCIT iterative statement.

The semantics of the JOCIT complete— for—statement shown above is

defined to VCG by post—transduction processing of the iterative statement

into an explicit loop iterative:stat’.

WPt iterative:stat’ ; q] = WP{iterative:stat* ; q]
where iterative:sta t~ is the compound statement:

(BEGIN (:= i~ a’) (LABEL g’) (ASSERT bool’)
stat*
( := i~ (PLUS i~ b*))
(IF (LTQ i’ c’) (GOTO g’ NIL))) j

~
.

The system generates the unique name i* for the local control variable i

within the loop . Similarly, g’ is a system—generated name for the loop

return point. The terms bool*, stat* , a*, b’, and c’ refer to the transduced

loop invariant assertion , loop body, initial value , increment , and final

value expressions , respectively, after they have had all occurrences of i

replaced by i’. Observe that the order of the events: initialization ,

execution of the body, incrementing , and branching , follow the sequence shown

in [3], p . ‘~— 14.

The t rans la t ion  as a c t u a l l y  implemented in VCG is somewha t more
complex than indicated above. For one thing , “downward ” incrementing ( i . e . ,
where b <O )  implies a d i f f e r e n t  exit test in the IF—clause of the translation ,

viz., (GTQ i~ c*) .  The implementa t ion tests  b and i f  it is l i t e r a l l y  a
num ber , chooses the appropriate inequality operator. If b is not a number
( i . e . ,  it is a numeric expression with a run—time value ) the VCG

implementation generates a conditional expression to cover both

possibilities , b>~O and b<O. Moreover , JOCIT also provides for degenerate

17 
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V
cases of the iterative statemen t (complete , 3—factor FOR—statement) shown

above , viz , the incomplete 2— factor and 1—factor cases. These are also

translated to compound statements though we do not show their forms in

detail. The incomplete 2— factor FOR—statement (where no exit value , c , is

specified ) is transd uced into a form equivalent to the complete (3—factor)

case , with c taking the symbolic value INFINITY. The VCG implementation

checks for c=INFINITY and if so, suppresses the exit inequality that would

)therwise appear in the post—transduction form . The trivia l case of a 1—

factor FOR—statemen t uses an obvious , separate translation to straight—line

- 

-- 
code. In the 2—factor and 3—factor case s, VCG makes a separate VC for the

loop path when it encounters the loop assertion , passing back the loop

assertion bool’ as the value to be returned by WP.

This concludes our discussion of WP for the statement types handled by the

RPE/1 VCG subsystem .

3. Features Added 
~~ .3[ iii. RPE/2~

The new features are:

‘ alternative—statement (ifeith/orif~statement)”

* goto’s (to labels , item:switches arid index:switches)

* r e tu rn  s ta temen t~~
~ optiona l entry point to a main program”

~ exchange statement”

* assignments to functional modifier variables

‘ data declarations (simple items , ar rays , tables and files)”

* file I/O operations”
* processing declarations (switch declarations , procedures ,

f u n c t i o n s  arid closes)

~ procedure call statemen t

Items in the above list marked with terminal ** were specifically

called for ~n the Statement of Work.

18
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We now define WP for each of the abov e types Jus t as was done in

the preceding subsection .

(a) Let alt:stat be the JOC1T form:

IFEITH bool $ stat ORIF bool l $ stat 1
ORIF bool2 $ stat2

END
Af ter transd uction thi s assumes the abstract  form , alt:stat’ :

(IFEITH (bool ’ s t a t’)
(b ooll ’  s t a t i’)
( bool2 ’ sta t2 ’)  ... )

Then

WP [a lt : s t a t ’ ; q ’] =
(AND (IMPLIES bool ’ (WP s ta t ’  q ) )

(IMPLIES (NOT bool’)
(AND (IMPLIES booll’ (WP sta ti ’ q))

(IMPLIES (NOT boo l l ’)
(AND ) )  . . . )

(b) Let goto:stat be either of the JOCIT forms :

GOTO name $
• [abstract form: (GOTO name NIL)]

GOTO switch:ex pr $
[abstract form : (GOTO sw :name indices)]

where name is a statement:neme and switch:expr is an indexed expression

(e.g., XSW($1$) for an index switch). These forms are handled by VCG at a

higher level than WP (as are the related RETURN statemen t and the optional

entry to a main program , both of which are discussed below). The following

technique is used :

A preprocess phase of VCG scans the program for labels and switch

statements. We insist that each label be followed by an assertion because in

principle any such point may be targeted by a goto. The preprocessor

replaces the goto:stat by the assertion appearing at the targeted point, if

the goto target is a label (statement:name followed by a dot), the

corresponding (ASSERT bool’) statement replaces the goto , except that the

form used is (ASSERT bool ’ STOP) , where STOP is a flag to the VCG tha t this

point is not to be used for initiating construction of a new path VC. It

merely terminates the current path VC. The actual assertion (ASSERT bool’)

19
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following the targeted label will , of course, initiate a new path. For gotos

addressing a switch (index:switch or item :switch) a similar device is

employed , except that the preprocessor pursues the chain of gotos implied by

a succession of switches to an ultimate target label . At each step, a:’

appropriate conditional expression is constructed , involving the possible

equality of either the item:switch variable to the values in the item :switch

list , or the index:switch variable to 0,1 ,2,... . Note that it is thereby

forbidden to have a switch statement readdress itself , either directly or

entirely through a chain of other switches. Although this is probably a

restriction on JOCIT practice , we do not believe the restriction to be

Serious .

( c)  RETURN statement

The JOCIT form :

RETURN $

[a bst ra ct form : (RETURN )]

may be part of the body of a procedure , function , or close declaration .

Execution of the RETURN implies that control will be passed to the exit

functions for these entities. Therefore , the same effect is generated in VCG

if the form (RETURN) is replaced at each occurrence by an assertion (ASSERT

exit—assertion ’ STOP) much as with the gotos discussed above. The exit—

assertion is , of course, derived from the specification attached to the

procedure , function , or close in which the return is embedded .

(d) Optional entry to a main program

The syntax for main:program provides for an optional name appearing

immediately preceding the final $ terminator. The semantics given in [3],

p. 14—7 state that:

Execution of a program begins with the first statemen t in the
program unless a main program has specified a statement name
following the TERM bracket . in this case , program execution begins
with the statemen t bearing the specified label. Of course , this
label must be accessible , i.e., it must not be declared within a
procedure , func t ion , or close declaration within the main program .

20
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The same semantic effect can be provided to the VCG by simply inserting a

goto statem ent targeting this statemen t label at the head of the executable

code. The VCG preprocessor provides this translation by executing a function

TRANS:RETURN on the body before it begins generating VCs .

This feature was implemented in VCG to ful fill  the requiremen t in

Task A referring to “multiple entry points on procedures ,” since , in fact ,

L multiple entry procedures are not part of JOCIT . The optional entry point to

main programs is, however , an analogous feature.

(e) Exchange statemen t

Let exch:stat be the JOCIT statement:

~:~~~

‘ : van == var2 $
The abstract form is (EXC HANGE van ’ var2’), an d the semantics are defined
(see [3], p. ~$_1~) by the sequence of statements:

tempi = van $
van = var2 $
var2 = tempi $

for the case of exchange of simple variables (for subscripted variables ,

additional complications may arise from the evaluation order of indices) .

Accordingly,

WP(exch :stat ’ ;q ’) WP [(BEGIN (:= tempi van ’)
( := van ’ var2 ’)
(:: var2 ’ t e m p i ) ) ;  q ’)

In the implementation of this definition , the var iable denoted by
tempi is actually a unique system—generated name (gensym) to prevent the

occurrence of name conflicts with any other variables that may be present in

the program or its assertions.

( f )  Assignments to functiona l modi f ie r  variables

The JOCIT functional modifiers ODD , CHA R , MANT , and POS have been
handled specially in VCG to permit WP to process assignmen t statements where

forms such as ODD(XX) appear on the lhs of assignments.

ODD: ODD(XX) refers to the least significant bit of the binary word

stored in XX. When ODD (XX) appears on the left side of an assignmen t , e.g.,

ODD(XX)=VV $ , the effect  is to set this  least significant bit to (the least

21 4 
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significant bit of) VV . These semantics are captured by defining WP[(:: (ODD

X X )  VV); Q] as:

WP[ (:= XX (SUBTRACT (PLUS XX (ODD VV)) (ODD XX)); Q’]

where Q’ is the result of substituting VV for each occurrence of (ODD XX) in

Q. (The point is to define the semantics in term s of an assignment with a

simple identifier on the left—hand—sid e.)

CHAR: CHAR(FF ) refers to the cha racteristic of the (floating point)

number FF. Thus , an assignment to CHAR(FF ) (e.g., CHAR(FF)=CC $) changes the

characteristic to CC , leaving the mantissa MANT (FF) unchanged . For any

floating point number FF:

FF = MANT (FF)’2”CHAR (FF)
• Hence , the above assignmen t makes FF MANT (FF)’2”CC . These semantics are

captured by defining WP[(:= (CHAR FF) CC); Q] as:

W P[ (:~ FF (TiMES (MANT FF) (EXPT 2 CC))); Q’)

where Q’ is the result of substituting CC for each occurrence of (CHAR FF) in

Q.

MANT : MANT(FF) is analogous to CHAR (FF). Thus , the assignment

MA NT(FF)~MM makes FF MM’2”CHAR(FF ) and WP[(:= (MANT FF) *1); Q] is define~1

by:

[ ( : = FF (TIMES MM (EXPT 2 (CHAR FF)))); Q’)
where Q’ is the result of substituting MM for each occurrence of (MANT FF) in

C.

POS: POS(FI) refers to the file position pointer of a file object ,

Fl. Thus , POS(Fl) is UNDEFINED if the file is not open; it is the integer 0

if the file Fl has just been optned ; and is otherwise a positive integer .

Assignments to POS(FI ) move the file pointer. Our VCG defines an internal

v ar i a b l e , F 1:FILEPTR , for each declared file Fl. This internal variable is

~ r i al ias for- (POS Fl). That is , assignment s to (POS Fl), whether they result

L 

from exp floit assignment statements , or from POS (FI ) being an actua l output
parameter of a procedure or f u n c t i o n , or from POS(Fl ) being a parameter in an
inp -.~t list of an INPUT statemen t , also result in the same virtua l assignments

t o  the v a r i a b l e  F I : F I L E P T R .  (F i le  I/O operations are discussed be low. )
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Th us, WP[(:= (P05 Fl) PP); Q] can be defined as:
WP [(:= FI:FILEPTR FP); C ]

where 0’ = the result of substituting PP for each occurrence of (POS Fl) in

0.

Assignments to the other t ypes of JOC IT functiona l modifiers , viz ,

r BiT , BYTE, NENT, ENTRY , and ENT are not presently accomm odated by the VCG.

Attempts  to use them on the lhs of assignments will produce an error message

from VCG .

(g) Data declarations

We consider separately these various type s of data declarat ions

provided in JOCIT :

* simple item declarations

* arra y declarations
* table declarations
‘ file declarations

(g.1) Simple item declarations

Simple items comprise numeric (integer , fixed— and floating—point

numbers) , Boolean , character—constant , and status—constant items. In each

case , the JOCIT syntax is mapped into an abstract form beginning with the key

word ITEM, arid other porti ’ns of the transd uced declaration will identify it
as an item of type : I (integer), A (integer or fixed—point item , depending on

the presence or absence of an integer declaring the number of fractional bits

used in the representation), F (floating), B (Boolean), H/T/C (character—

constan t of type Holl eri th , Transm iss ion , or ASC iI ) , or S (status—constant).

This information can be useful in verification: the deductive

system may riced to know the type of a va r i ab le  to justify its use in

particular contexts. In each case , the action of the subfunction of WP that

handles item declarat ions is to assert a pos t—transduc t ion  logical version of

the information contained in the declaration . This effect can be obtained by

making WP[item :decl; q] return the expression:

(IMPLIES item:dec l~ q)

where item:decl ’  is the pos t—transduc t ion  fo r r rang i t em:decl ’ . In pract ice  we
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have arranged to collect the p ost—transduct ion forms , i tem :decl* , in one

large conjunction with the input assertion for the main program (or other

such program unit , e.g., subprogram , procedure , etc.).

- 

. 
These post—transduction ersions, item:decl’, vary from one type of

item to another. We have attempted to anticipa te wha t types of information

will actually be useful in verification and to carry over such information

into the post—transduction forms. For example , a declaration (for an

unsigned integer II):

ITEM 1I 1 2 0 U $

becomes , a f t e r  transd uction and post- t ransduct ion t ransformation :
item:deol* = (AND (1NT I I )  (GT Q I l 0) )

In the present system , we have not attempted to use detailed number

representation data; hence , the information “20 bits per item” is not carried

over . In a later version of our system , where the semantics of machine

representation may become significant , we will modify these forms. Presets

to values are currently handled , however . Thus, the signed integer

declaration :

ITEM JJ I 15 S P 1000 $
which provides for initialization of JJ to the value 1000, maps over into:

item:decl* = (AND (INT JJ) (EQ JJ 1000)).

Note that the clause (GTQ J.J 0) is absent because JJ was declared signed .

Floating item and fixed item declaration s are mapped into logical

fcrms like (REAL FF). We are not attempting to distingui sh between fixed and

floating—point item s, both types are treated as real numbers in the deductive

system . Presets are handled just as they are for integer items.

Boolean i tems are mapped into forms such as:

(AND (BOOLEAN BR) (EQ BB 0))

or s:mpl y,

(BOOLEAN BB)

if the preset ~s absent . The deductive system can be informed (by means of

an axiom ) tha t (BOOLEAN BR) is equivalent to (OR (EQ BR 0) (EQ BR 1)) in

— r~nformity with JOC IT semantics.
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The treatment of other types of items is similar , with Hollerith ,

Transmission , and ASCII items all mapped without distinction into (CHARACTER-
CONST item :name).

(g.2) Array declarations

Since these are more complex than simple item declarations we have

attempted to carry more information over into the post—transduction form.

For example , the JOC1T declaration :

ARRAY AA 2 3 I 15 S $ (See [3], p. 5—7 )

becomes in post—transduction form:

(AND (IS—ARRAY AA) (EQ (DIMENSION AA) 2)
(E Q (UPPE RBOUND 1 AA ) 2)
(EQ (UPPERBOUND 2 AA ) 3))

since AA is here a two—dimensional array with two elements along the first

(“col umn”) dimension , and three elements along the second (or “row ”)

dimension The verifier does not currently perform array bound checks , but

it will be relatively simple to make use of this bound information in future

extensions.

Array declarations need to invoke another VCG mechanism , however ,

because of name scoping (see [3], p. 8—3). We have arranged that , upon

entering the name scope (e.g., a procedure or function declaration) within

which an array (or table , file , or switch) is declared , the array information

gi ven above is also stored on the property list of the array name. This

information is available locally, i.e., while VCG is acting within that name

scope , and the information is destroyed upon exiting that scope . A list

(ARRAYNAMES ) is also maintained (and updated ) which collects the names of

currently declared arrays . The globa l variables , SW I TC H NAM ES, TABLEN AM ES,

FILEN A MES, and PROCNAMES play similar roles. Thus , the action of WP on an

array (table , file , or switch) declarations also has a side effect within VCG

with respect to this property list storage mechanism , in addition to the

value that WP passes back.

(g.3) Table declarations

In most. respects table declarations are handled in a manner similar

to arra y declaration s . However , the post-Lranisd’iction logical form ,
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table:decl’, has been kept to the minimum information (IS-TABLE table:name).

The side—eff ec t of WP[table:d ecl’ ; q) ~s, as with array declarations , the

creation of property list information relevant to the declared table. This

includes the following :

Indicator Promertv

TABLESIZE table:size ’
TABLESTRUCTIJRE P/S
TABLEPACKINC N/MID

where table:sjze ’ is (V number) or (R number) , for “variable ” or “rigid”

sizes , respectively. TA BLESTRUCTURE refers to P (parallel) or S (serial).

TABLEPACKING distingui shes the three types: N (no packing , i.e., word units),

M (med ium packing , i.e., byte units), and D (dense packing in bit units).

While the verifier does not currently make use of such machine represention

information , we expect to do so in future improved versions. Provision for

preset information was not included in this version .

(g.14) File declarations

File declarations are analogous to array and table declarations in

the mechanisms used in VCG. The JOCIT file declaration :

FILE Fl [C/H/B] ni [V/RI n2 file:~ tates device:name $
(where [C/H/B] = file:type , and [V/RI = length:type ) becomes in transduction:

(FILE Fl file:type’ ni length:type’ n2
file:states’ device:name)

where ni = file:size = the maximum number of records in the file , and n2 =
record:size = either the maximum record size (for V—specificiation) or the

fixed record size (for R-specification). Record size is given in bytes for H

and C—type files , and In words for B (binary) files. The file:type’ is

defined as:

• ASCII, if file:type = C;
a HOLLERITH , if flle:type = H;
• BINARY , if file:type = B.

The item file:states ’ = a list of the items in the supplied list of

status constants , file:states , e.g., ((V SHUT) (V OPEN’INPUT ) (V
OP EN’O UT PUT)) , if file:states happens to be V(SHUT) V (OPEN’INPUT)

V (OPEN ‘OUTPUT

_ _ _  - .-_  
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The information stored (temporarily, i.e., w :th:rA the name ~~~~~~ ~.r

the file declaration) on the property list of the f:iename , Fl , is:
indicator Proper~j

F1LETYPE ASCII /HOLLERITH/B1NARY
F1LE SIZE n i  (an  in teger )
LENGTHTYPE V/H
HECORDSIZE n2 (an integer)
F1LESTATES file:states ’
DEVICENAME dev ice:name (e.g., DSK)

(h )  File I/O sta tements

The f i l e  I/O s t a t e m e n t s  comprise the  INPUT , OUTPUT , OPEN , and SHUT

stat ements. The transd uced syntax for these forms is:
i np : s t a t ’  = (INPUT file:name vi v2 - . . )
ou t : z t a t ’  = (OUTPUT file:name el e2 . - . )
ost a t ’  = ( OPEN iNPUT/OUTPUT f i l e : r i a m e  . optional—ioli:t )
sh u t : st a t ’ = (SHUT INPUT/OUTPUT f i l e :n a me  . o p t i o n a l —j ou s t)

The elem en t a r y  ope ra t ions  here are opening and  s ht . t t :n g  a f :  l~
(w i t h  no i ol i st  p r o v i d e d ) ,  and the  INPUT and OUTPUT s t a t e m e n t s , i rip : :t ~~t ’  ~ r~d

o~ t : s t a t ’ . The s e m a n t i c s  of the  OPEN and SHUT s t a t e m e n t s  w i t h  an i o l i rt

p r o v i d e d  a r e  d e f i n e d  by conca t ena t i on  of a simple  OPEN/SHUT s t a t emen t w i t h

t h e  co r respond in g  INPUT/OUTPUT st at em en t .  in the  case  of OPEN , t h e  f :le  is

opened and then  the  IN P UT /C ~JTPUT is execut ed ; in  t he  case  of SHUT , t h ~
concatenatY~n is  i n  reverse  o r d e r — — t h e  I N P U T / O U T P U T  s t a t e m e n t is fo l l c . w . :  by

the  s i m p l e  SHUT .

Thus , we need only  d e f i n e  WP f~ r t h e  s i m p l e  OPEN/SHUT f crn :  and th~
I N P U T / O U T P U T  forms . W P [ ( O P E N / S H U T  iN P U T / O U T P U T  f:le:n; me); q] is def:ne~ b y :

W P [ ( B E G 1 N ( :=  ( M A K E : F J L E S T A T E  f : l e : n 2 m e )
( O P E N / S i I U T  I N P U T / O U T P U T ) )
( :=  (POS f i l e : n a r a e )  0 )
( : =  ( M A I K E : F 1 L E P T H  f i l e : r i p m e )  0 ) )

; q ]

The de firiit. ;ori of W P [ ( I N P U T  f i l e : r i ~ m~ it~ rn ); q ] ,  .~~~~., tn~ f~ r~r~ f~
inp .t of ~ s~~n t~ le  i t e m , i s :

W P [ ( [ 3 E G 1 N  ( : :  it em ( H E A D — R E C U H L f : l - ~ :r i a m e
( P C ~S f ;  l e : r i a m ) ) )

( :=  (POS f i l e : n a m e )  ( P L U S  1 ( PUS f :  1 —  : r l a m e ) ) ) )
; q ]

. . . . 
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Analogousl y, WP[ (OUTPUT file:nam e item); q] given by:

WP [(BEGI N (:: f~ le :riam~
( W R l T~-:—RECOH1) f~ i t :  r i a m ~

(POS u i l e : r a m e )  ; t e m ) )
(POS Ui l e :n a m e )  (PLUS 1 (P05 f :  le:niame) ))

qJ

WP for INPUT/OUTPUT statements with an iolist consisting of sever~~

items is defined in the obv:ous way b y recursion on the length of this list.

Thus , updating of the file position pointer , e.g., FF:FILEPT R = (POS FF) , :s

handled by an expl icit assignmen t to (PO S FF )  each t ime a record is  read

from , or written onto , the file FF.

The funct ions MAKE:FILEPTR and MAKE:FILESTATE used above are such

tha t ( MAKE:FILEPTR FF ) r e tu rns  FF:F I LEPT H , a nd (MA KE:F IL ESTATE FF )  r e tu rns
FF:FILESTATE , where FF can be any JOCIT name. As mentioned earlier ,

FF:FILEPTR i s e q u i v a l e n t  to (POS F F ) ;  the VCs con ta in  the :n form at ion  t ha t
they a re the same q u a n t i t y  ( i n t e g er , or U N D E F I N E D ) .

The forms (HEAD-RECOR D file:name ptr) and (WRITE—RECORD file:name

ptr item ) are analogous to SELECT and CHA NGE as used in the semantics of

arrays described above.

(i) Process ing  d e c l a r a t i o n s

Processing declarations comprise switch declarations , procedure

declara tions , f u n c t i o n  d e c l a r a t i o n s , and close d e c l a r a t i o n s .  The las t  th ree

are s i m i l a r  and will be d i scus sed toge the r .  There a r e  two somewha t d i f f e r e n t

types of swi t ch  d e c l a r a t i o n s , i ndex  s w i t c h e s  and i tem sw:tches , and they  a re

discussed separately.

(i. 1) Index sw stch declarations

Index s wi t c h e s a re  declared by:

SWITCH sw:nam e = ( forml , form2 , . .. , f o r m n )  $
where the forms are either empty or goto:formulas of the  type :

g o t o :f or mu l ~ : :=  nam e

~t em : sw :  t c h : n am e
switch:name ($ index $)

The transduced syntax for an index switch is:

( INDEXSW I TC H sw:na m e  f o r m i ’  form2 ’ . . .  for mn ’)
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wher e  ~ r empt y f a r m  t r a r i s d uc e s  t o  N i L , a n a m t  t . r an i s d .ot ~~ t n  ( r i n r n ~ L~~J ,  ar . h

i n  i n d e x e d  f o r mu l a , e . g . ,  1SW 1( $ 1 , 2 $ ) , t r a n : .T d . (~~s to  t. ht ab s ’  r a c t .  fo r m ( i .~~~1

(1 2 ) ) .  I -or example , t h e  ind ex sw .t c h  d e c l a r a t i on :

SWITCH XSW 1 (LO , Li , ,  CL~~, XSW2($2~ ), I S W 1( $ l f l )  $
mapped : nto :

( 1NDEXSW 1TCH XSW 1 (LO N I L )  ( L i  N I L )  N I L  ( CLS N i L )
(XSW 2 ( 2 ) )  ( 1SW 1 ( 1 ) ) )

The s e m a n t i c s  a r e  l i k e  those of a computed goto; when t h e  s t a t emen t
- , GOTO X S W 1 ( $ O $ )  $ i s  encountered ( w i t h i n  t he  scope of t h e  above d e c l a r a t i o n )

th e ef f ect is t h a t  of GOTO LO $, s ince  the  z e r oth  elemen t of XSW 1 i s  tn~
t a r g e t  label  LO (p r e s u m a b l y  a s tatemen t n a m e ) .  S im : l a r l y ,  GOTO X S W 1 ( $ 1~~) ~
means  GOTO L i  $; s ince  the  second e l emen t  of XSW 1 is e m p t y ,  GOTO X S W 1( $ 2 f l  ~
has  rio e f f e c t .  (No te  t h a t  NiL is the  r io—op s t a t e m en t i n  a b s t r a c t  sy n t a x ) .

As f a r  as  the  index  s w i t c h  decl~~r d t i o r I  i t s e l f  i s  c i c ~- r r i e ~t , ~ E

m e r e l y  ~~~~ e~ ~he index  s w i t c h  l i s t , i .e . ,  the  Li sp a u nt , :

( ( 0  . (LO N I L ) )  (1  - (L i  N I L ) )  (2 . N I L )  (3 - ( CLS N I L ) )
(L~ - (XSW 2 ( 2 ) )  (5 . (ISW 1 ( 1 ) ) ) )

on t he  p r o p e r t y  l i s t  of t h e  :w i t c h : r i a m e  (in t h i s  case , X S W 1 ) .  The p~-
i n d i c a t o r  used is  1ND E X SWL IS T.  T h i s  i n f o r m a t i o n  assoc :at e s  each  i r r ~~~.. r

position 0,... , 5 w i t h  i t s  c o r re s p on d i n g  ta rget e l e m en t .  The name  >.~~- 1  i s

a l so  p laced  ‘Sri a g loba l  l : st , SW 1TC HNAMES . Both p i eces  of i r i f o r n ~~ i o n
used in the VCG p r o c e s s i n g  of GU TO s .

( i 2 ) Item switc h decl arat ion s

Uec l~~r a t  i on s  of t t ! f l  w : t ch e s  a re  t r a n s d u c e d  ~r i t ’ S  f o r m s  I:

(ITEMSWITcH l.~w i SWJIEN (= 1 ( L i  NIL)) (=  —5 ( CLS N I L ) ) )

1 w . ch :na~~ , ~~ ii £-,M :s the ver~ ah~ e ( nw : cr . : S .  n ’s

ev~i l . ~ I t ’d ~~ n a ( S_ lU I.~ -~1 $ :s enco jitt ~rec , and  t n e  l :st  of l : s t s  ~t~~Cr .

~ n = )  :o -a ’ - .: ~~ w t h ~ ~~~~~ :‘~~ t of ,~ r~~~o i-: ’~ j - - t

j O S  t , : . ..~h of  a : n .  ~ rms ~L of i l  .~ s of ~~~~~~ 1r , o f  . ~~f l r . ’ 1 s: .

J(_IT~, ~~,. J ~ . i i co’ .r:~~~ - t , ~h’ : r .  : ; i - ~~~~ . o r :  i s  b . i ~. L 1  ~ ; :f ~~ -~~i r ~- .

~r e  mr- n o :  U . I ~ i2 L.S ~~. n :  - i i t . ’ r ~ ‘ , t a t ~ ~. r  i s  ‘:.r~ . t - ’d ~t . . !~ : c t : n

‘h- U(.. ,i’U : t a t - n m: t , as d .  r i t . f e~ rl:~~r. i-Il ‘ s:’ t :s m i t t : : - .: r. ~~~ 

t Ie :IT • ¶ ch decl  ~~~~~~~~ ‘ r :s t r ~ t m : ,~rrt  s t  r: ~ S sr . :  - .
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( e . g . ,  SWITEM ) and the  sw : t c h  c o m p a r I s o n  l o s t  ur~a~~r tr~ ~rop~-r o : e :

I TEMSWVA RI ABLE arid ITEMSWL I ST , respect:vei j, on the  p r o p e r t y  l o s t  c-f t r ~
ow : tch name (ISW1). This property las t i n f o r m a t i o n  :5 local to the name

scope of the item switch a rid is deleted when VCG exits from that scope .

( 1 . 3 )  P r o c e du r e , f u n c t i o n , and c lose  d e c l a r a t i on s

The a ct :  cnn  of VCG on these  th ree  t ypes  of d e c l a r a t i on s  a re  clos~~~y

p a r a l l e l  (ex cept .  for  m i n o r  d i f f e r e n c e s  produced by t he  a b s en c e  of an o u t ç ’ t

p ar a m e t e r  l i s t  for f u n c t i on s  and  c l o s e s) .  We c o n i f :n e  our d e s c rip t : or :  to the

case of p rocedure  d e c l a r a t i o n s .  As i n  the  case of sw i t ch  d e c l a r a t i o n s , the

impor tan t  ac ti on is  t h e  p lacemen t of re levan t i n f o r m a t i o n  ex t rac ted  from the

transd u ced d ec lar a t i on on the  proper ty  l ist of the procedure:name.

A transduced proc edure declaration has the form:

(PROC proc:nam e (irip ot:list (OUT :PARS output:list ))
dec l a r a ti ons :  l i st
(BEGIN s t a t i sta t 2  . .

where proc:riame is the name of the procedure ; the car of the second elemen t

is  a list of the formal :nput. pa ramete r s , e . g . ,  a list like (XX YY); the cadr

of t f l e  second e lemen t :s a l is t l ike (OUT :PA R S ZZ W W ) , which uses OUT :PARS as

a ( r e s e r v e d ) k eyw ord ; d e c l a r at i o ns : l : st  c o n t a i n s  the  fo rmal  e n t r y —  and e x i t —

~cn er t : on s  for  t h e  procedure ; and the  las t  elemen t of (PROC . . . )  is the

pr ’~ce du r e  bodj  (a  compou r - 1:st a t e m e n t ) .

The i n f o r m a t i o n  stored (on t he  p r o p e r t y  l i s t  of p r o c : n a m n e )  is as

fol lows

Ind~~c at p r  P rpp e rt ’j

F O R M A L — I N P U T — P A R A M E T E R S  i r ip u t  :1: st
FORMAL—OUT P U T — P A R A M E T s h ~ out put. :10 st
F O R M A L — E N T R Y — A S S E R T I O N  i n p u t  : a s s e r ti on :
F O R M A L — E X I T — A S S E R T I O N  o u t p u t  : as s er t i o n i

These a c t . ons  ar e  pe r fo rmed  by a f u n c t i o n  c a l l e d  P R 0 C E S S :P R O C ~ E O U ~
(w h : ch  i s  c a l led  f rom P R O C E S S : P R O C D E C L S  wh en :  VCG :s i o o K : r l g  a t  the whc~~
program ‘~r a t  a procedure , O lOSe , or su b p r o g r a m  w: t h i n  wh :ch  t ne c :r r en :

p roc edur e  is declared). (Note: There i s  a m i n o r  d i f f e r e n c e  w :t h  respect  to

the  F O R M A L — E X I T — A S S E R T I O N  p r o p e r t y  fo r  f .~n : c t ~~on d e c l a r a t i o n : :  i n :  tha t t h e

om p loc ~ t out put vi:r :able for a function is the f u n c t i on  name ; hence , th is
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n i t er r i a l name  i s  r r  p laced  by t he  f u n c ti  or: name cons ’ ed onto t b ’  :npu~ :1 : ot

e . g . ,  FOO [a f , r : r t i o r :  n a m e ]  is  r ep laced  by ( FOG XX Y Y )  ev t -rj~ :’Iere in the

our p r : t : a s s e r t t o r i )  to get  t he  F O R M A L — E X I T — A S S E R T I O N  for f u n c t i o n s .)

The i n f o r m a t i o n  stored in  t h i s  p r o p e r t y  l o s t  p e r s ist s  o n l y  whi i t

VCG is  a c t i n g  wi t h i n  t h e  d e c l a ra t i o n  scope , arid it is  used b y t he WP funct :on

for  p r o c e dr :r e : ca l l s , W P : C A L L , d i scussed  below.

Invoca t i on :  of WP on a proced ure ( fu n c t i o n , subprogra m , or c l o ne )

d e c l a r a t i on  also invokes  the  fol l owing hierarch :cal ser :es  of ev t r : t s ’ :

— 1 . The us er is in f o r m e d  t h a t  a subprocedure  has beer :  e r ico ~~:t. ered ,
and he is asked w h e t h e r  he desires  the  VC s for this :-ubproced re F

c o m p u t e d  now.

2. if the  r i ser  a s s en t s , the  whole  p rocedure  ( f u n c t i o n ,
su b p r o g r a m , or close ) is passed for a n a l y s i s  to the  a p p r o p r i a t e
v e r s i o n  of VCG . ( I t  is ca l led  VCGL : PROC for p rocedur e s  arid
f u n c t i o n s ;  observe  t h a t  the f u n c t i o n :  VCG is for  user  m : v o c a t i o
amid  or : mai  ri prog rams  on ly .  ) The body of the  p r o c e dur e  is t h e n
s u b j e c t e d  to the  ‘ann e kind of a n a l y s i s  desc r ibed  for t h e  m a t  ri
program , arid only when i t s  VC s h a v e  been c a l cu l a t e d , do e s  t h e
s y s t e m  r e t u r n :  to g e n e r a t i n g  VCs for t he  m a i n  p r o g r a m .  The VCs for
t he  subpr ocedor e  w i l l  be bound as v~~1ue to  a sy s t e m — g e n e r a t e d  name ,
( e . g . ,  PR OC 1* , if the  procedure is  c a l l e d  PRO d ) , a r id  PROC 1 will
a lso  rece ive  a valu e as  a Lisp  v a r i a b l e  eq .al t o  the  ( a b s t r a c t )
d e c la r a t i o n .

3. If the user does riot  a sse n t , a n a l y s i s  of t he  body of PRUC 1
wil l be del ’  rre’d , as will analysis of any suhproced :res that PUOC 1
might  c o n : t a i  r i .  How ev er , the user can pick up this p : o. n e n s  a t  a
later time , since PROC 1 (as a Lisp variable) will receivt the
app roprt a te bind ing to the declaration . In t h e  iII~ rim , inc Viis
for tht: top—level program will exi st iii a form : t.h~ t assurnt s he
co ni s i steric y of PROC 1 with its formal enitry/~’x: t . speci f :  c’ n t i o n s , nd
a ny  c a l l s  made  t o  PROC 1 w i l l  make use of t h a t  i n f o r m a t i o n .

The a b ove  eq ne t ’ of evt~nt,n is ci OSeI J bo und up w ith our m ech~ n: os f or  S

c a r rj : n ~ o h ierarchi cal pro ofs , as descr:bed or : m ore detail i n  S e e i lo n  i i .

(j )  P i e  ~- ‘g u r t c a l l  stat em en t

‘ the JOC1T proae.lurt c a l l  n t a t ~ m e r it  o s  d .  ~ t : ::c s he d  o r : the abot ra n t

r y n i t  ox  toy t h ’ key word nP~.~L:  S

( C A L L  p r c e  : r e-i r e
(act e ’l :im t . t_ :l::~ (OUT : PA H ac t u n l : ’ - ’ ’ t  mu st)))

I - u n c t i o n  ( S i l l s  do  f fer  onl y o n  t h a t  ( 1 )  U c - ’  r - ’ : 1 : : ’ it :  ~ m ; t  ~ m c
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function calls do not appear at the statemen t level , but onl y w :t r i : .

expressions . They are , ther efore , more properly referred to as “funictso n,

references ,” althoug h the JOCIT manua l [3] uses both terms.

The act i on of VCG (through WP:CALL ) on: procedure calls is fairl y

complex . It i s  best described by a dummy example. Suppose we are o n  a

program where a proced ure , named PRO d , has  bee n dec lared . Suppose , also ,
tha t PROC 1 has formal input parameters  XX and YY , one o u t p u t  pa ramete r  ZZ , an

entry assertion IN:PROC1 (XX , YY ) , and an exit assertion OUT :PROC1 (XX, YY ,

ZZ). The analysis of the body of PROC 1 will have generated some set of VCs ,

which , when they have been proved valid , substant iate the following

quant ifi ed formula :

(FORALL XX (FORALL YY (FORSOME ZZ
(I MPLIES ( I N : P R O C 1 XX Y Y )  (OUT : PROC 1 XX YY Z Z ) ) ) .

Suppose that a call to PROC 1 is encountered by WP , e.g ., the call:

pr oc : cal l ’  (CALL PROC 1 ((AA BB) (OUT:PARS CC)))

where AA , BE and CC ar e , respec t i v ely , th e actua l values corresponding to t he

formals  XX , YY and ZZ .  The above q u a n t i f i e d  formula will be instan tiated by

the actua l pa rameter values , with a system—generated unique name , e. g . ,

CC :0013 , for the value of the actua l output parameter after symbolic

e x e cut i o n  of t he  p rocedure . The c u r r e n t  a s s e r t io n  q be ing  passed back

through the procedure call statemen t may contain: references to the exit va

of the actua l output parameter. (In: fact , it a l m o s t cer ta inl y w i ll con tain
suc h r e fe rences  s i n c e  t h e  e f f e c t s  of c a l l : n g  PR OC 1 a re  on th is p a r a m e t e r . )
The WP ac t :o n wi ll , f i r st , substit ute a gensym , e.g., CC:0013, for a l l
occurrenc es of CC in q, resulting in : a formula q ’ . This q ’ is then  used to

c o n s t r u c t  t h e  f o r m u l a :

q ’’ = ( A N D  ( I N : P R O C 1 A A BB )
(IMPLIES (OUT :PROC 1 AA BE CC:0013) q ’ ) )

The fc-rm’..la q ’’ i s  r e t  ~rn: ed as t h e  v a l u e  of ~P~ proc:ca ll ’ ; q].

Since any ;n :stanices of CC appearing on q have been replaced by instances of

the gensym CC :00i~~, any occurr ences of CC in this form da can onl y h av e

r e s u l t e d  f rom a p p e a r a n c e s  of CC :n t h e  i n p u t  assert oor: The gensym—ing of CC

to CC : 001 3 p e r m : t s  ‘ .n t o  r e fe r  t o  b~~n h  e n t r y  and  e x i t  v a lu e s  of t h e  a c t u a l

output param eter.

3;,
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Let us a n a l yze wha t q ’’ means i nn  t e rms  of the  overa l l  VC under’

generat io n . The current VC will embody q ’’ inn the form:

( iMPLIES p WP [code; q ’ ’ ] )
where “code ” re fers to the code intervening between some earlier controi

poin t (where the assertion p is a t t a c h e d)  and the procedure call statement.

In prov ing th e abov e Vd , it is incumb ent on the  prover (be  he human : or
m a c h i n e )  to show t h a t  q ’’ w i l l  be true when ever control reaches the procedure

ca l l  from the  poin t  p .  In p a r t i c u l a r , proving t h i s  i m p l i c a t i o n  n e c e s s i t a t e s

showi ng that (IN:PROC 1 AA RB) will hold , i.e., t h a t  the  procedure ’ s i n p u t .

assertion is satisfied by the actua l input values. It also requir es prov :ng

tha t q ’ w i l l  fol l ow from the conjunct ion of p and the assert ion: (OUT :PROC 1 AA

BB CC:0013). The latter is equivalent to showing t h a t  the  desired relation

q ’ holds amon g these variables , assum ing that the procedure call establishes

the spec ified relation (OUTPROC1) among AA , BB , and CC on exit.

This process effectively permits us to decouple the process of

proving correctness  for formal  procedure from the program (or subprogram ,

other  procedure , fun c t i o n , or c lose)  where  i t  is invoked . The forma l

r e l a t i on :  between e n t r y —  and e x i t — a s s e r t i o n s  for the  procedure  is :‘ r : s t an t : at e d

S in: the VC for the host program (subprogram , etc .) by t h e  actua l parameters ,

arid these  i n s t a n t i a t e d  s p e c i f i c a t i o n s  can be used to prove c o r r e c tn e s s  for

the host p rog ram.

33



‘ l  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-—

~~ ~~~~~
-. 

~

-

~~~~~~~~~~~~~~~~~
-
~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~

i l l  V E R 1 F 1 C A T 1 L N  l i M i N G

A. in t roduct ion

Task B, item z~.l .2 , of our Statement of Work , requires the reduction of

proces sing t ime for J3 program v e r i f i c a t i o n  by a fac tor  of a t  least  2
— compared to the RPE/1 system , despite the greater scope of the l i R E / I

verifier . The most obvious way of measuring a cha nge , using the R PE/2  sy stem
to v e r i f y a program tha t  took a known amount of t ime with  RPE/ 1 and compar ing

the times required , is not feasible because the programs with which we dealt

in RPE/1 were not valid JOCIT and consequently not valid as input to liRE/I’.

This prevents direct time comparisons for both parsing and v~~r~~f i c a t i c r

condit ion generation but pe rmi t s  them for dedur- t~ on because the c lasses  of

syntactically well—formed formulas accepted by the two deductive sys.r.ems art

substantially the same. For parsing , a reasonable com par i son  can be made

be tween the two systems by measur ing  p ar s i n g  ~n u n z t 5  of t ime  per :r.r . t

lexical token . Similarly, we can com pare the  t imes  to gene ra t e  v e r . f t c a t o i o n i

cond i t ions  for compa rabl 1 sized programs .

We have made a set of such comparisons and conclude t h a t  t he  o mp r o v e m e n t

in RP E/2  is substantially be t t e r  t h a n  the  r equ :r emen t  on the Statement of

Work.  A b i n a r y  search program on w h i c h  we reported o n  t he  R P E / 1  F i n a l  Bepcr t

requi red  2 10 seconds for pars ing , 5 seconds for v e r i f i c a ti o n  cond i t i on

gene ra t ion , and 600 second s for deduc t ion .  In t he  RPE/2  sys tem , c o m par a b l e

speeds a r e  .7 seconds for pars ing , 1 second for v e r i f i c a t io n  condition

gene ra t i on , and 27 .5  second s for deduc t ion .  The t o t a l s  are  815 seconds in

R P E / 1  ar id  2 9 . 2  seconds i n  R P E / 2  or a speedup by a f ac to r  of about  27 .

(However , i t  mus t  be noted t h a t  t he  R P E / 2  t imes  a re  on a DEC KL — 2 0 computer

t h a t  i s  3 to 5 t imes  f a s t e r  t h a n  the  DEC K A — l O  on w h i c h  t he  R P E / 1

meas:remer :ts were made. Plso , the present system is written in  MACL i SP w h i c h

provides  compiled objec t code tha t , inn our a p p l i c a t i o n , appear s to be
approximately 1 .5 time3 f a s t e r  t h a n  R P E / l ’ s 1NTERL1SP .  Both these conve r so o m:

~~~~ NOT ~~~~~



(actors are affected by variables whose measurement is outside our scope ,

such as the different ways the two lisp systems implement file input

primitives ; hence comparison is necessarily quite imprecise.)

Taking into account the change in implementation language and machine

between RPE/1 and RPE/2 , we conclude tha t the speed of verification condition

generation is essent ia l ly  unchanged althoug h the language being verified ~s

about 10 times larger in RPE/2. Especially since VCG is a negligible part of

the time for verification , we are quite pleased with this result.

Althoug h the comparisons presented above take only cpu time into

accoun t , we believe the time required for interaction has also been reduced

subs tan t ia l ly .  This involves only the deductive fac i l i t ies  of the system.

We com pared the proofs of a moderately complex verification condition for a

binary  search program such as that  done in RPE/ 1 .  The RPE/1 proo f required

about three hours of user time. In RPE/2, as a result of both the more

powerful deductive mechanisms that have been implemented and the more

flexible interactive facilities of tableaux , this proof requires only about

fi fteen minutes of user time.

The remaining subsections of this section describe the changes in four

parts of the system : the parser , the Presburger deductive mechanism , the
tableaux proof system , and the hashing utilities.

B. Parser Timing

Of the verifier ’s various components , the parsing mechanism showed the

most dramat ic  speed improvement——about  30 to 1. As we noted abov e , part of
this improvemen t is due to faster computing facilities aad to the use of the

MACLISP compiler. The most important reason for the speedup , however , is the

incorporation of a parsing algorithm fundamentally different from the one

used in the RPE /1 system .

The parsing mechanism used in our earlier effort is based on ar

algor i t h m [51 devel oped by J. Ear ley . An advan tage  of th i s  a lgor i thm os

tha t  i t  assumes on ly  tha t  the grammar in quest ion is con tex t—free .  This made
Earley ’s algorithm particularly attractive to us at the beginning of the
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R PE/ 1  e f for t , whe n we had had r e l a t i ve ly  l i t t l e  ex perience wi th  the JOV~ A L

language .

Earley ’s algorithm is easy to use but computationally inefficient. Our

implementation in RPE/1 was able to parse at a rate of only about one token

per second . While this level of performance was adequate for the early

stages of system development , it is far below that needed for practical use

of the verifier .

The parser  implemented  in the RPE/2 effort is based on the SLR (k)

parsing algorithm first proposed by Dc Remer [a ] .  Unlike the Earley

algorithm , the new technique requires the context—free grammar to possess

certain structural properties. The inconvenience of modify ing the grammar

into acceptable form is balanced by a d ramat ic  increase in parsing speed . In

the case of the JOC1T parser , this speed turned out to be approximately 30

milliseconds for each lexical token .

The improvemen t given by the new parsing technique might be compared to

tha t gained by using a compiler ra ther  than an i n t e rp re t e r .  We feel tha t  the
new parser is sufficiently fast for use in practice.

C. Presburger Deductive Mechanism

Much of the increased e f f ic iency  of the ded uct ive  component is due to
improvements  made in the Presburger decision mechan i sm .

This mec hanism is able to prove v~ lid fo rmulas , a rid find couniterexamples

for i n v a l i d  fo rmulas  in an extension of universa l Pre sbur ger  a r i t h m e t i c .
Roughly speaking , universa l Presburger formulas are those tha t can be built

ni p from in tegers , in teger  var iab les , a d d i t i o n , m u l t i p l i c a t i o n  by cons tants ,
the usua l arithmetical and propositional relations , arid universa l closure .

The formula (FORALL x)(FORALL y)[3x+y 2(x+y)÷ (x—y)i, for example , is in the
class. Our extension of universal Presburg~ r introduces arbitrary

u n i n t e r p r e t e d  func t ion  symbols .  The formula
(FORALL x) (FORALL y)

[I x  < f(y)+1 AND f(y)< x+1J IMPLIES y+g- (x) g (f(yfl-i-y]

is a member of this extended class.
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The improvements to the Presburger code made in the RPE/2 effort c2r.

best be explained in relation to the decision method used in the ear~~ea

version . This method is carried out in two stages.

First , the closed formula F to be proved or disproved is transformed , by

a kind of disjunctive normal form expansion, to a set of integer l inear

programming problem s (ILP~ ). The ILPs have the property that F is valid if

and only if no ILP is solvable.

Nex t , the ILPs are tested (one by one) for solvability by using an

improved version of the SUP-INF method first proposed by Bleds~e [1]. If

one of the ILPs is found to have an integer solution , that solution provides
-

. 
a model , and therefore a counterexample , for F. If none is found solvable , F

is reported valid .

The improv ed Presburger mechanism differs from the earlier version in

two important respects: both the technique used to test ILPs for solvability

and the means for handling function symbols have been changed .

As we noted above , a modification of the SUP—INF method (described in

detail in 115]) was used to test ILPs for solvability in the RPE/1 version .

The SUP-INF approach to integer linear programming may be viewed as that of

transforming an integer problem into the real domain , solving it in tha t

domain , and then interpreting the result in the integer domain. The

advantage of this approach over other methods of integer linear programming

is speedy solution of small problems. The efficiency of this method derives

partly from ease of use (it requires no matrix initialization as does other

methods) and partly from the fact that the real problem is easier to solve

than the integer problem . The chief disadvantage of the SUP—INF method is

incompleteness——it cannot determine feasibility for a certain class of

problems whose solvability depends on Diophantine behavior. Concerned about

maintaining completeness in the Presburger mechanism , we decided to implement

a more traditional method of solving ILPs——the Gomory [8] algorithm——in the

RPE/2 effort . The Gomory algorithm entails a substantial amount of matrix

initialization overhead , compared to the SUP—INF method , and so it is not

quite as efficient for small problems. On the other hand , the array

manipulation operations used by the Gomory algorithm are handled quo te
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efficientl y by MACLiSP , so the Overhead is not substantial in our

implementation. We have found , in fact , tha t for medium to large problems

the Gomory implementation is as fast  or faster than the In te rl i sp  SL JP— 1NF

implementation. Using the Gomory algorithm has significantly extended the

domain of completeness of the Presburger mechanism as a whole.

A second important improvemen t in the mechanism concerns the method used

to deal with the semantics of function symbols. These semantics require tha t

counterexamples for invalid formulas satisfy the substitutivity axiom of

equa l i ty ;  for example , i f  the var iab les  x arid y are given the same numerical

value inn a counterexample , the terms f(x) and f(y) must also be given the

same va lue . The mechanism used to enforce th i s  axiom in the ea r lie r
implementation involved intricate , inefficient , and often unreliable code

interlaced with the code for the SUP—INF algorithm . In the newer version , we

use a more efficient and conceptually cleaner method . The new method is

independent of how integer feasibility is tested arid is therefore more

reliable. it permits the proof of some theorems that could riot be proved by

the earlier mechanism inn reasonable amounts of time.

D. Tablea ux System Timing

The deductive system has been substantially improved over that of RPE/1

by the fact that we now use the Tableaux Mechan nism to manage all proofs .

This facility acts as the sole user onterface and is rt~spo n s i ble for
£ tran smitt ing user directives to various specialized deduct ive mec h? r~ srns. Fy

compa rison , our RPE/1 deductive system had an ad hoc mec hanism for

interaction and lacked the present system ’s capacity to struc turt— proofs and

niannage proof strategy. This new facility is described inn Sec tooni lV .

1 
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E. ~~~~ Timing

In area s of the system requiring the use of hash tables , we have adopted
Balbine ’s double hashing algorithm [11] using twin prime table sizes so that
divl3ion by the table size and the table size minus two can be used to

compute hash probes. This great ly reduces the secondary clustering that
limited the Speed of our original single hashing scheme.

~
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IV INTE RACTIO N

A. lntroductj o~

Task C , i tem ~4 . 1.3  of our Statement of Work , requires the addi t ion to

the RPE/1 verification system of features to increase the ease of

interactiOn . We have implemented each of the specific features required——the

ability to save partial proofs, the capacity to extend the assert ion language
with user—defined constructs , and the capability of carrying out structured

proofs of programs—— as well as a large number of other facilities intended to

red uce the quantity and improve the quality of user interaction during

veri fication.

The two remaining subsections of this section describe the interactive

features of the tableaux proof system and the user facilities for carrying

out hierarchical proofs.

B. ~1’ableaux Deductive System

Most of these f a c i l i t i e s  have  been implemen t ed w i t h i n  the f ramework of
our Tableaux Deductive System and so we begin by descr ibing the ideas
u n d e r l ying t h i s  system . It is  based on the “anal y t ic  tab leaux ” of Srnul l yan
[16). Inn this method , we prove a formula F by c o n s t r u c t i n g  a tree T such

t h a t :

~ the nodes of T are formulas ,

* the root formula of T is F,

* e~eh of the nodes of I is derived from some ancestor node
accord o ng to one of the  ru les  (enumerated below ) for ex tend ing  a
tabl e au , and

~ each of the branches of T is “closed” in the sense tha t i t
con tains a pa:r of formulas P and (NOT P).

To understand why this technique works , consider the formula f ( T )  which i

constructed from a tree T by conjo in ing , ov er each branch  ~~~ , the disjunction

~4 1
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of the formulas on B. Suppose we app ly  a rule R to T to obtain t~i~ extensec

tableau R[T}. The critical fact is that for each rule R , f(T) is equivalent

to f(R [T)). It follows by induct ion  on the number of rules applied in going

from the initial tableau TO with only the root node containing F to the final

closed tableau IC that  f ( T O )  is equivalent to f(TC). But f(TO) is just (AND

(OR F)) which is equivalent to F. And f(TC) is a conjunction of disjunctions

each of which is tautologically true because it contains a formula P and its

denial (NOT P). Thus F is equivalent to a tautologically true formula arus

hence must be a theorem .

Before enumerating the rules for extending tableaux , let us explain why

we have chosen analytic tableaux as the basis of an interactive proof system .

The previous paragraph is the sketch of a proof (given in detai l  in Chap. 2

of Smul lyan)  tha t the method is consistent , i.e., it can never construct a

closed tableau for a non—theorem . It can also be proved ( see Smullyan , pp.

57—60 ) tha t if F is a valid first—order formula , then there is a finite

closed tableau rooted with F. Thus the method of analytic tableaux is as

good in theoretical terms as any proof procedure for first—order logic .

We believe that , besides i t s  theoretical meri ts , this method is

practical for present—day verification of interesting programs. This is

because i t  lends It se l f  to a harmonious and flexible mixture of automatic anc

i n t e rac t ive  proof. The user of our Tableaux System has available a variety

of interactive facilities for dividing a large proof into smaller parts ,

performing primitive logical operations , invoking lemmas , and investigating

the state of a part ial  proof. The user also has available two powerful

automatic facilities for simplifying algebraic expressions and proving

theorems in a quantifier— free theory of Presburger arithmetic (augmented with

uninterpreted functions). This combination of tools leads to a proof style

in which  the user does parts of a proof in small , manua l Steps until reaching

formulas w i t h i n  the domain of the automatic f ac i l i t i e s  tha t  may then be used
to complete the proof.

We like this arrangement for several reasons. First , as we have

remarked , the i n t e r ac t i ve  f a c i l i t i e s  amplify the power of the completely

mechanical  ( but semant ica l ly  restricted ) provers now ava i l ab le  to permit the

-
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proof of i n t e re s t ing  programs. Second , the s t ruc tur e of the sy stem is qu i t e

flexible: as new automatic techniques are developed , we can incorporate them

into our uniform user interface , both simplifying the burden of the user and

extending the potency of the complete system . Finally, we have structured

the system so tha t the dependence of a proof on particular lemmas , or the

results of automatic theorem—proving components is made explicit. We believe

that the presence of these easily understandable “audit trails” in the

presenta t ion  of a proof greatl y increases the c r e d i b i l i t y  of the system
compared to t h a t  of a system whose f ina l  resul t  was a ba r  TRUE or FA LSE.

The rules for augmenting a tablea u are as follows :

~ ALPHA : If a node contains the formula (O R dl  d2 . . .) , then  the
chain  of nodes conta ining di , d2 , . ..  may be added at each leaf
below the formula . The intuitive content of this operation is
that to prove a disjunction , it suffices to prove any one of the
disjuncts .  Thi s rul e also applies  to the formula (IMPLIES F l
F2 )  because of its equivalence to (OR (NOT F l )  F2) , to the
formula (NOT (NOT F ) ) , equ iva len t  to (OR F) , and to the  formula

-, 
~, (NOT ( AND ci c2 . . . ) ) , eq u iva len t  to (OR (NOT c i )  (NOT c2) . . . ) .

• BETA : If a node conta ins  the formula ( AND ci c2 . . . ) , t hen t he
open leaves below it may each be augmented by adding , as sons ,
each of the conjuni c ts .  Note tha t t h i s  d i f f e r s  from the ALPHA
rule where a chain is added with d2 the son of dl , d3 the son of
d2 , etc. Here the conj uncts  are  added as bro thers .  This  ru le
permits us to prove a conjunction by proving each of the
conjun ct s  sepa rate ly .  It also app l i es  to the formula  (NOT ( OR - 

-

dl d2 . .. ) ) , eq uiva len t  to ( A N D  (NOT d l )  (NOT d 2 )  . . . )  and to
the formula (NOT (IMPLIES Fl F2)), equivalent to (AND Fl (NOT
F2)).

• GAMMA : If a node contains the formula (FORSOME x (e x)) (where
(e x) is any formula with free variable x), then the uniclc~~~d
leaves be] ow the formula may be augmented by node s c o n t a i n i n g
th e formula (e a) for any term a. That is , to prove that (~ x)
holds for some x it is sufficient to exhibit any such x .
Eq u i v a l e n t l y ,  below the formula (NOT (FORALL x (e x))), there
may be appended any instance (NOT (e a)).

‘ DELTA: This rule provides for formulas of the form (FORALL x (e
x)) . The unclosed leaves below such f o r m u l a s  may be au gmented
by nodes containing the formula (e (sfi)), where (sfi ) is a
newl y i n t r o d uced Skolem fun c t ion , a funct ion with rio special
proper t ies .  The bas is  of t h i s  r u l e  i s  tha t , i f  we can prove (e
(sr i)) with no knowledge about ~fi , then this is tanitamou nit t o
prov ing (FORA LL x (e x)). Similarly, the open branches
conta ining a formula (tiOT (FORSOM E x (e x))) may may be
augmented by the formula (NOT (~ (sf ~ ) ) )  where , inn  t he  same w a y ,

is newly introduced .
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~ INSTANCE: This ru1 e combines the GAMM A and DELTA rules ~r.to o r t ,
allowing the user to strip any subset of the quantif~trs in a
formula by substituting arbitrary terms for the existential
variables and Skolem functions for the universa l var~ables. For
example , given the formula (FORSOME x (FORALL y (FO R SC ’ME z (p  x
y z)))), the  user might c hoose to e l i m i n a t e  qu a n t i f i c a t i o n  over
y and z but retain quantification over x. This yields the
formula (FORSOt.IE x (p x (sfi x) t)), where t is a n y  user
supplied term and sf1 ~s a system- supplied Skolem function.
Note tha t to retain soundness , all enclosing existential
indicial variables must be included as parameters of the Skolem
function.

* INVOKE : This rule provides tha t if a formula p ~s va l id , the n
the  negation of i t s  universa l  closure may be appended to any of
the branches of a tableau. Observe that if p is valid , then the
negation of its universa l closure is unsatisfiable. Thus ,

- 
- 

~-ddirn g this negation to a branch preserves the validity of the
disjunction of the branch’ s formulas .

~ IDENTITY: Suppose two nodes ci and c2 contain a formula e and
the negation of a u n i v e r s a l l y  q uan t i f i e d  i d e n t i t y  whose ma t r ix
is (EQ eql eqr) or (1FF eqi eqr). Then any proper substitution
instance of e with respect to this identity may be appended to
leaves that are descendants of both ci and c2. (A substitution
is proper if none of the variables of the substituted terms are
captured by existential quantifiers of e.) This is the usua l
rule of substitutivity of identities.

‘ ALGEBRA : Suppose a node contains a formula F and the algebraic
simplifier reduces F to F’ . Then F ’ may be appended to open
leaves below F.

• A R I T H :  Suppose c is a node some of whose ancestors  c o n t a i n  the
form ulas F l , F2, . .. ,  FN. Suppose the Presburger decision
mechan ism can prove the formula P: (IMPLIES (AND (NOT Fl )
(NOT FN)) F). Then the formula (NOT F) may be appended to the
open leaves below c. This rule may be understood as an
application of the INVOKE rule to the lemma P and the BETA rule
to the resulting node containing (NOT P).

We will describe the facilities now included in the system (which ~s

still being actively developed ) by guiding the reader through the proofs of

two sample theorems. These theorems are two of the verif~cat1on condi t ions
that arise in proving the correctness of a string searching algor:thrt

developed by Boyer and Moore [2). (in Appendix B, we g~ve a compit-te

Specifi cation of the user command Set for carrying out tableaux proofs.)

The first condition to be proved :s:

(IMPLIES (AND (AND (EQ PATLEN (LENGTH PAT))
(EQ STRLEN (LENGTH STR)))
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( A N D ( INT  ST H LEN ) (GT Q STRLEN 0 ) )
( A N D  ( INT PATLEN ) ( GT Q PATLEN (j~~~~)

(AND (BOOLEAN FLG ) (EQ FLG 0))
(AND (IS—ARRAY STR)

(EQ (ARRAYTYPE STR) CHARACTER—CONST)
(EQ (DIMENSION STR) 1)
(EQ (UPPERBOUND 1 STR ) 1000))

(AND (IS—ARRA Y PAT)
(EQ (ARRAYTYPE PAT) CHARACTER—CONST)
(EQ (DIMENSION PAT) 1)
(EQ (UPPERBOUND 1 PAT) 100)))

— 
(AND (AND (AND (EQ PATLEN (LENGTH PAT))

(E Q STRLEN (LENGTH S T R ) ) )
(EQ 0 0))

(OR (E Q (STRPOS PAT S T R )  0 )
(GT Q (PLUS (S TRPOS PAT STR ) PATLEN )

(PLUS PATLEN 1))))))

Assuming that this condition is the va lue  of the var iab le  v c : l , we begin  a
proof of the theorem by the command

‘(newproof v c : l )

in the annotated interactions tha t follow , we will present the user

commands in lower case and prece~ ed by “ “ . System responses wi l l  be in

upper case. The system responds to the newproof command by asking for the
dec lara t ion  of a nu m ber of’ t h e  unknown i d e n t i f i e r s  t h a t  occur in the theorem .

HOW SHOULD PATLEN BE DECLARED? TYPE TERM OR FORMULA
term
HOW SHOULD PAT BE DECLARED? TYPE TERM CR FORMULA
term
HOW SHOUL D LENGTH BE DEC LA R E D ?  TYPE TERM OR FO R MUL A
ter m
HOW SHOULD STRLEN BE DECLARED? TYPE TERM OR FORMULA
term
HOW SHOU LD STR B E DECLARE D ? TY PE T E R M OR FORMULA
term
HOW SHOULD INT BE DECLARED? TYPE TERM OR FORMULA
fo rmula
HOW SHOULD FLG BE D E C L A R E D ?  1Y P E TERM OH FORMULA
term
HOW SHOULD BOOLEAN BE DECLARED? TYPE TERM OR FORMULA
ter m
F{CW SHOULD IS—A RRA Y BE DECLARED? TYPE TERM OR FORMULA
f o r m u l a
HOW SHOULD A R R A Y T Y P E  BE D E C L A R E D ?  TYPE TERM OR FORMULA
term
HO~ SHOULD C H A R A C T E R — C C N S T BE D E C L A R E D ?  TYPE TERM OR FORMULA
term
HOW SHOULD DiMENSiON BE DECLARED? TYPE TERM OR FORMULA
term
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HOW SHOULD UPPERBOUND BE DECL ARED? TYPE TER M OR FORMULA
term
HOW SHOULD STRPOS BE DECLARED ? TYPE TERM OR FORMULA
term I- -

(IMPLIES (AND ...) (AND ...))

TABLEAU SETUP COMPLETED

The system is now ready to proceed with the proof. We begin by telling it to

pr oceed au toma t i ca l ly  as far  as possible.
(proofgo)

r
NEW NODES : (27 26)

(NODE 30 HAS BEEN CLOSED WRT NODE ~ )

NEW NODES : (31 30)

(TA BLEAU IS NOT CLOSED )

(CURRENT:LASTNODE :CURRENTTYPE ARE RESPECTIVELY 26 3 1 BETA )
THE UNCLOSEDLEAVES ARE: ((31) 29)
(NONLOGICAL IS ((31 29 28 25 2L~ 23 22 21 20 19 18 17 16 15

1U 13 12 11 10)))

At this point a tableau has been grown with 31 nodes and many of the branches

have been closed a u t o m a t i c a l l y .  Two branches remain open : those that  end in
the leaves 31 and 29. We ask to see the formula at node 31 .

•(pf 31)

(EQ 0 0)

Although  t h i s  formula  is obviously t rue  and can be proved by our Presburger
a r i t h m e t i c  theorem prover , the system cannot present ly  invoke th i s  prover
automatically. So we turn its attention to the formula by means of the

command

‘(nextnode 31)
NONLOGI CA L

which responds with the logical type of the formula--NONLOGICAL. Next we use

the a r i t h m e t i c  theorem prover . One form of the AR I TH rule  is invoked by tne

func t ion  a r i t h c ; i t  t r ies  to prove the current formula by using the formulas

at. the  argum ent  nodes as hypotheses.  In t h i s  case , we require no hypotheses ,

so the command is just

(ari the )

and the  system responc s by proving the formula and closing the branch:
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(EQ 0 0) HA S BEEN VERIF iED

(NODE 32 HAS BEEN CLOSED WHT NODE 31)

(TABLEAU IS NOT CLOSED)

(CUR RENT :LASTNODE :CURRENTTYPE ARE RESPECTIVELY 3 1 32 ARITH )
THE UNCLOSEDLEAVES ARE : (NIL 29)
(NONLOGICAL IS ( ( 3 1  29 28 25 24 23 22 2 1 20 19 18 17 16

15 14 13 12 11 1 0 ) ) )

The only open branch is now tha t  ending at node 29. We position the system

at this node
— (nextniode 29)

NONLOGICAL

• 
. and issue a command to display the nodes of this branch. (Note tha t the

current  node is denoted by the “~~~“ symbol.)

‘(visible)

29~ (GTQ (PLUS (STRP OS PAT STR ) PATLEN)  (PLUS PA TLEN 1 ) )
28 (EQ (STRPOS PAT STR ) 0)
25 (NOT (EQ STRLE N (LE NGTH ST R ) ) )
24 (NOT (EQ PATLEN (LENGTP P A T ) ) )
23 (NOT (GT Q STR LEN 0 ) )
22 (NOT ( IN T S T R L E N ) )
21 (NOT (GTQ PATLEN 0))
20 (NOT (1NT PATLEN))
19 (NOT (EQ FLG 0))
18 (NOT (BOOLEAN F L G ) )
17 (NOT (EQ (UPPERBOUND 1 STR ) 1000))
16 (NOT (EQ (DIMENSION STR) 1))
15 (NOT (EQ (ARRA YTYPE STR ) CHARACTER—CONST ))
14 (NOT ( I S — A R R A Y  S T R ) )
1 3 (NOT (E Q (UPPERBOUND 1 PAT )  100) )
12 (NOT (EQ (DIMENSION PAT) 1))
11 (NOT (EQ (ARRAYTYPE PAT) CHARACTER—CONST ))
10 (NOT (IS—ARRA Y PAT))

We now observe t h a t  one of the propert ies of the subrout ine  STRPOS i s  needed

to complete the proof. The required property, called STRPOS :AX1 is

(FORALL Si (FORALL 52 (OR (EQ (STRPOS Si S2) 0 )
(GTQ (STRPOS Si S2) 1)))))

i t  is invoked by t he  command
*( j n i v ok e  (m a k e t h m  st r p o s : a xl ) )
HOW SHOULD S2 BE DECLARED? TYPE TERM OR FORMULA
term

arid the user then selects the appropriate instance of the lemma (whose

_ _-
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negation signifies in the tableaux method that it is assumed ) by means of tne

dialogue

(NOT (FORALL ::l
(FORALL ::2

(OR (EQ (STRPOS :1 :2) 0)

S 
(GTQ (STRPO S :1 : 2)  1 ) ) ) ) )

( SUBSTITUT E AT : :i  ?) y OK[ (WHA T SUBSTITUTION ?) pat

(SUBSTITUTE AT ::2 ?) y OK
- 

- 
( WHA T SUBSTITUTION ?) str

- 

— 

(THE RESULT OF SUBSTITUT IOt~ IS:) 
-

(NOT (OR (EQ (STRPOS PAT 5TH) 0) (GTQ (STRPOS PAT STR) 1)))

This instantiation of the lemma is of type BETA ; appended to the tableau , it

will split into two cases , one with the node (NOT (EQ (STRPOS PAT STR ) 0))

and the other with the node (NOT (GTQ (STRPOS PAT STR) 1)). Noting that the

first of these contradicts node 28 and will close immediately, we proceed to

add the instantiated lemma to the tableau.

‘(proofgo)

(NODE 34 HAS BEEN CLOSED WRT NODE 28)

NEW NODES : (35 34)

(TA BLEAU IS NOT CLOSED)

(CURRENT :LASTNODE:CURHENTTYPE AR E RESPECTIVELY 33 35 BETA )
THE UNCUJSEDLEA VES ARE: ((35))
(NONLOGICAL IS ((35 31 29 28 25 211 23 22 21 20 19 18 17

16 15 14 13 12 11 10)))

This leaves a single open branch terminating iii the second case that arises

from the lemma . And this branch can be closed by a simple arithmetic

ded uction using the formula at node 29. Thus the proof is concluded by

‘(nextn ode  35)
NONLOGICA L
(arithc 29)

(NOT (GTQ (STRPOS PAT STR) 1)) HAS BEEN VER IFIED

(NODE 36 HAS BEEN CLOSED WRT NODE 35)
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(THE PR OOF IS COM PLETE )
The second condition is:

(IMPLIES
( AND ( AND ( AND (EQ PATLEN (LENGTH PAT ) )

(EQ STRLEN (LENGTH STR)))
(EQ FLG 0.)

(OR (EQ (STRPOS PAT STR ) 0)
(GTQ (PLUS (STRPOS PAT STR) PATLEN)

(PLUS II 1))))
(AND (IMPLIES (GT II STRLEN)

(AND (EQ FLG 0) (EQ (STRPOS PAT STR) 0)))
(IMPLIES (NOT (GT II STRLEN))

(AND (AND (AND (AND (EQ PATLEN
(LENGTH PAT ))

(EQ STRLEN
(LENGTH 5TH)))

( EQ FLG 0 ) )
I.— (EQ (SUBSTRING PAT (PLUS 1 PATLEN )

PATLEN
(SUBSTRING STR (PLUS 1 II)

(SUBTRACT (PLUS II PATLEN)
P A T L E N ) ) ) )

(O R (EQ (STRPOS PAT STR) 0)
(GTQ (PLUS (STRPOS PAT STR) PATLEN)

(SUBTRACT (PLUS (PLUS II PATLEN ) 1)
P A T L E N ) ) ) ) ) )))

The proof of this condition , bound to the variable vc:2, is begun by the

command

‘(newproof v c :2 )
to which the system responds

(IMPLIES (AND ...) (AND ...))

TABLEAU SETUP COMPLETED

Noting the occurrences of SUBSTRING in the body of this formula , we decide

tha t we will need to substitute instances of the SUBSTR:NIL lemma which says

that
(FORALL S (FORALL K ( FORALL L

(IMPLIES (GT K L) (EQ (SUBSTRING S K L) NIL)))) ))
The lemma invocation function , like the functions for instantiation , identity

substitution , and algebraic simplification (unless its argument is proved)

shows the user the result that may be appended to the tableau but requires a

proofgo to do the a ppending . Sinc e we do not , for the momen t , want th i s
proofgo to apply the ALPHA and BETA rules to vc:2, we will forc e the system
to come back to the user after each rule is applied .
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‘(setq automat ic  n i l )
N I L
‘(invoke (makethm substr:nil))
HOW SHOULD K BE DECLARED ? TYPE TERM OH FORMULA
term
HOW SHOULD L BE DECLARED ? TYPE TERM OR FORMULA
term
HOW SHOULD NIL BE DECLARED? TYPE TERM OR FORMULA
term

(NOT (FORALL ::1
(FORALL ::2

(FORALL ::3
(IMPLIES (GT :2 :3)

(EQ (SUBSTRING :1 ~2 :3) NIL))))))

(SUBSTITUTE AT : : 1 ?) y OK
(WHA T SUBSTI TUTION ?) pat

(SUBSTITUTE AT ::2 ?) y OK
(WHAT SUBSTITUTION ?) (plus 1 pat l en)

(SUBSTITUTE AT ::3 ?) y OK
(WH AT SUBSTITUTION ?) patlen

(THE RESULT OF SUBSTITUTION IS:)

(NOT
(iMPLIES (GT (PLUS 1 PATLEN ) PATLEN )

(EQ (SUBSTRING PAT (PLUS 1 PATLEN ) PATLEN) NIL)))
Now , we add this instance of the lemma to the tableau.

‘(proofgo)

(TAB LEA U IS NOT CLOSED)

(CURRE NT :LASTNODE :CURRENTTYP E ARE RESPECTIVELY 1 2 ALPHA )
THE UNCL O SEDLEAVES ARE:  ( ( 2 ) )
(ALPHA IS ( ( 1 ) ) )
(BETA IS ((2)))

Nex t , we create and add to the tableau the other required instance of the

lemma .

‘(invoke (makethm substr:nil))

(NO T
(FORALL :: 1

(FORALL : :2
( FORALL ::3

(IMPLIES (GT :2 :3)
(EQ (SUBSTRING :1 :2 :3) NIL))))))
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(SUBSTITUTE AT ::1 ?) y OK
(WHAT SUBSTITUTION ?) str

(SUBSTITUTE AT ::2 ?) y OK
(WHAT SUBSTITUTION ?) (plus 1 ii)

(SUBSTITUTE AT ::3 ?) y OK
(WHAT SUBSTITUTION ?) ii

(THE RESULT OF SUBSTITUTION I S : )

(NOT (IMPLIES (CT (PLUS 1 II) II)
(E Q (SUBSTR ING STE (PLUS 1 I I)  I I )  N I L ) ) )

‘(proofgo)

( TABLEAU IS NOT CLOSED )

(CURRENT :LASTNODE :CURRENTTYPE ARE RESPECTIVELY 1 3 ALPHA )
THE UNCLOSEDLEAVES A RE: ((3 ) )
(ALPHA IS ((1)))
(BETA IS ((3 2)))

Although the ALPHA and BETA rules are applicable to the instances just

created , we wish to avoid using them in this way. This is done by

‘(defer 2)
‘(defer 3)

Next , we want to proceed automatically from the current node 1.

‘(setq automatic t)
T
‘(proofgo)

NEW NODES: (13 12)

NEW NODES : (17 16 15 14)

(NODE 28 HAS BEEN CLOSED WET NODE 9)

(NODE 29 HAS BEEN CLOSED WET NODE 12)

NEW NODES: (29 28)

NEW NODES: (31 30)

(NODE 32 HAS BEEN CLOSED WET NODE 12 )

(NODE 33 HAS BEEN CLOSED WRT NODE 6)

NEW NODES : (311 33)
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(NODE 35 HAS BEEN 4 LOSED WET NODE 9)

NEW NODES: (36 35)

NEW NODES : (38 37)

(NODE 4 1 HAS BEE N CLOSED WRT NODE 6)

NEW NODES : (142 41)

(TABLEAU IS NOT CLOSED)

(CUBRENT:LASTNODE:CURRENTTYPE ARE RESPECTIVELY 37 112 BETA )
THE UNCL OSEDLEAVES ARE:  ( ( 1 4 2 ) 34 36 4 0)
(BETA IS (NIL 2 3))
(NONLOGICAL IS ((42 140 39 36 314 26 25 21 20 13

12 11 10 9)))

This grows 42 nodes and closes several branches. To see what to do next , we

obtain a summary of all the open branches.

‘(av)

(FROM NODE 34)

314 (EQ (SUBSTRIN G PAT (PLUS 1 PATLEN ) PATLEN )
(SUBSTRING STR (PLUS 1 II)

(SUBTRACT (PLUS II PA TLEN) PATLEN )))
25 (GT II STRLEN)
12 (NOT (EQ (STRPOS PAT STR ) 0))
11 (NOT (EQ STRLEN (LENGTH STR)))
10 (NOT (EQ PATLEN (LENGTH PAT) ))
9 (NOT (EQ FLG 0))

(FROM NODE 36)

36 (EQ (STRPOS PAT STR) 0)
21 (NOT (CT II STELEN))
13 (NOT (GTQ (PLUS ~STRP0S PAT SIR) PATLEN ) (PLUS II 1 ) ) )
11 (NOT (EQ STRLEN (LENGTH 5TH)))
10 (NOT (EQ PATLEN (LENGTH PAT )) )
9 (NOT (EQ FLG 0))

(FROM NODE 40)

lb (GTQ (PLUS (STEPO S PAT STR ) PATLEN)
(SUBTRA CT (PLUS (PLUS II PATL E N ) 1)  PATLEN ))

39 (EQ (STRPOS PAT STR ) 0)
20 (CT II  STRLEN )
1 3 (NOT (GTQ (PLUS (STRPOS PAT STR) PATLEN) (PLUS Ii 1 )))
1 1 (NOT (EQ STRLEN (LENGTH 5TH)))
10 (NOT (EQ PATLEN (LENGTH PAT)))
9 (NOT (EQ FLG 0))
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(FROM NODE 42) -

42 (EQ (SUBSTRING PAT (PLUS 1 PATLEN) PATLEN)
- (SUBSTRING STE (PLUS 1 II)

(SUBTRACT (PLUS II PATLEN) PATLEN)))
20 (CT II STRLEN )
13 (NOT (GTQ (PLU S (STRPOS PAT STR)  PATLEN ) (PLUS II 1 ) ) )
11 (NOT (EQ STRLEN (LENGTH STE)))
10 (NOT (EQ PATLEN (LENGTH PAT)))
9 (NOT (EQ FLG 0))

DONE

-• First , we observe that node 40 follows from node 13 with a little arithmetic .

‘(nextnode 40)
NONLOGICAL
‘(arithc 13)

(GTQ (PLUS (STRPOS PAT ST R) PATLEN)
( SUBTRACT (PLUS (PLUS II FAlLEN ) 1)  PATLEN ))

HAS BEEN VERIFIED

(NODE 143 HAS BEEN CLOSED WRT NODE ~O)

(TABLEAU IS NOT CLOSED )

(CU R RENT :LASTNODE :CUR RENTTYPE ARE RESPECTIVELY 40 143 ARITH )
THE UNCLOSEDLEAVES A RE: (NIL 34 36 42)
(BETA IS (NIL 2 3))
(NONLOGICAL IS ((112 40 39 36 34 26 25 21 20 13

12 11 10 9 ) ) )

Next , we observe tha t nodes 42 and 314 can be closed by using ar i thmetic  and
the lemma instances created earlier.

‘(nextnode 142 )
NON LOGICA L
‘(arithc 2 3)

(EQ (SUBSTRING PAT (PLUS 1 PATLEN ) PATLEN)
(SUBSTRING SIR (PLUS 1 II) (SUBTRACT (PLUS II PATLEN )

FAlLEN)))

HAS BEEN VERIFIED

(NODE 1414 HAS BEEN CLOSED WET NODE 142)

(TABLEAU IS NOT CLOSED)

(CURRENT :LASTNODE :CURRENTTYPE ARE RESPECTIVELY 42 1414 ARITH )
THE UNC LO SEDLEAVES ARE:  (NIL  314 36)
(BETA IS (NIL 2 3)) 

- _ _ _ _  _ _ _ _ _ _ _  
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(NONLOGICAL iS ((142 40 39 36 311 26 25 21 20 13 12 11 10 9)))

T
‘(nextnode 344 )
NONLOGICAL
‘(ar i thc 2 3)

(EQ (SUBSTRING PAT (PLUS 1 PATLEN ) PATLEN )
( SUBSTRING SIR (PLUS 1 I I )  (SUBTRACT (PLUS II PATLEN )

P A T L E N ) ) )

HAS BEEN VERIF IE D

-• (NODE 115 HAS BEEN CLOSED WET NODE 311)
- - 

(TABLEAU IS NOT CLOSED )

( CUR R ENT :LASTNODE :CURRENTTYPE ARE RESPECTIVELY 311 115 AR ITH )
THE UNCLOSEDLEAVES ARE : (NIL 36)
( BETA IS (NIL 2 3))
(NONLOGICAL IS (( 112 40 39 36 314 26 25 2 1 20 13 12 11 10 9 ) ) )

I
A single open branch remains , and to close it we must invoke another of the

properties of STRPOS.

‘(nextnode 36)
NONLOG I CAL
‘(invoke (makethm strpos:ax2))
HOW SHOULD S2 BE DECLARED ? TYPE TERM OR FORMULA
term

(NOT (FORALL : : 1
(FORALL : :2

(OR (EQ (STRFOS :1 :2) 0)
(LTQ (PLUS (STRPOS :1 :2) (LENGTH :1))

(PLUS 1 (LENGTH : 2 ) ) ) ) ) ))

(SUBSTITUTE AT : : 1  ?) y OK
(WH AT SUBSTITUTION ?) pat

(SUBSTITUT E AT ::2 ?) y OK
( WHAT SUBSTITUTION ?) str

(THE RESULT OF SUBSTITUTION IS:)

(NOT (OR (EQ (STRPOS PAT STR) 0)
(LTQ (PLUS (STRPOS PAT STR ) (LENGTH PAT ))

(PLUS 1 (LENGTH S I R ) ) ) ) )
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‘(proofgo )

(NODE 147 HAS BEEN CLOSED WET NODE 36)

NEW NODES : (148 147)

(TABLEAU IS NOT CLOSED)

(CURRENT:LASTNODE:CURRENTTYPE ARE RESPECTIVELY 146 148 BETA )
THE UNCLOSEDLEAVES ARE: ((48))
(BETA IS (NIL 2 3))
(NONLOGICAL IS (( 14 8 42 140 39 36 314 26 25 21

20 13 12 11 10 9)))

‘(visible 48)

48 (NOT (LTQ (PLUS (STRPOS PAT SIR) (LENGTH PAT) )
(PLUS 1 (LENGTH STR))))

36 (EQ (STEPOS PAT STR ) 0)
21 (NOT (CT II STRLEN))
13 (NOT (GTQ (PLUS (STRPOS PAT SIR) PATLEN) (PLUS II 1)))
11 (NOT (EQ STRL E N (LENGTH S T R ) ) )
10 (NOT (EQ PATLEN (LENGTH P A T ) ) )
9 (NOT (EQ FLG 0) )

A proofgo has closed off the easy case of the lemma , and a summary of the
k

open branch that  is lef t  shows that  some appropriate ar i thmet ic  deduction

will finish up the proof.

‘(nextnode ~4 8 )
NONLOGICAL
‘(ar i thc  21 13 11 10)

(NOT (LTQ (PLUS (STRPO S PAT STE ) (LENGTH PAT ) )
(PLUS 1 (LENGTH STR )) ) )

HAS BEEN VERIFIE D

(NODE 149 HAS BEEN CLOSED WET NODE 148)

(THE PROOF IS COMPLETE )

U
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C. Other Interactive Facilities

1. Facilities Su000rtin2 Hierarchical Verification

In our earli er report , [7] , Sec. VII , we described a plan for a

~et of interactive facilities to support hierarchical verification . These

facilities have been implemented during the RPE/2 phase of our work, in

fulfillmen t of Task C of our Statement of Work which calls for “means for

carrying out top—down/bottom—up proofs of program correctness for well—

struc tured programs”. In this subsection we describe the user—oriented

faciliti es that our system provides for conducting such proofs .

The program struc turing feature of JOCIT that best lends itself to

hierarchical verif icat ion is procedure abstraction . We include therein the

closely allied notion of functional abstraction——a function declaration

d i f fe r s  from procedure declarations only in that no formal output parameter

list is provided for functions. We have , therefore , based our approach to

hierarchical ver i f icat ion (ei ther  top—down or bottom—up ) on the use of JOCIT

formal procedures. Another important aspect of hierarchical verification
methodologies [13] is the notion of data abstraction.  Unfor tuna te ly ,  JOCIT

does not provide primitive constructs supporting data abstraction , and thus

it is not within the scope of this effort.

a .  T0D—Down Verification

The verif icat ion system features discussed here are embedded
in the ver i f icat ion condition generator (VCG ) subsystem ; they have already
been described briefly in Section C. We describe here how these features

enable one to carry out top/down program verifi cation with our system .

A JOCIT main program will  be processed by VCG (af ter
transduction) to produce a set of VCs for the main program . These VCs will
be stored in a Lisp variable named , for exam p le , MPG’, if the main program is
MPG . (Main programs do not have names in JOCIT , hence a sui table name must
be provtde d by the user.) If MPG contains no embedded procedures (i.e., is

nonhiera rch ica l ) , a l l  of these VC~ per ta in  direct ly to MPG at a single

abst rac t ion level . Proo f of their  v a l id i t y  by our tableaux dec uctive system
concludes the single—level ( nonhierarchical) verif ication process.
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Suppose , on the other hand , that MPG contains one or more

procedure declarations. In the process of computing the VCs (MPG’) for MPG ,

the VCG subsystem will report to the user the names of procedures that it has

discovered , and it will ask the user if he wishes their VCs to be computed at

that time. If the user is employing the system to conduct verification

concurrently with a top—down design , he will want to defer that computation .

For example , a declaration for some procedure PROC 1 contained in MPG may

consist essentially of a formal parameter list and declarations , and it may

contain only a dummy body, such as BEGIN END or a comment. The declarations

within  th i s  unelaborated procedure should , however , contain at least an entry

assertion and an exit assertion . These assertions spe c i f y  wha t the procedure

is supposed to do after it has been implemented . They must , of course , refer

to the formal input  and output  parameters  of the procedure . In thi s

incomplete state , it would be meaningless to have VCG compute the VCs for
PROd , and the user will , therefore , defer  tha t  part of the VCG process.

This approach corresponds to a top—down programming style , i.e., programming

by successive refinements. Even though MPG might contain one or more calls

to the s t i l l—unelabora ted  procedure PROd , the VCG will produce an

appropr ia te  Set of VCs for MPG , making use of the formal en t ry /ex i t

assertions for PROd . If these assertions are consistent with the way in

which PROC 1 is used in MPG , the main program VCs , MPG’ , wil l  be val id and
presumably provable by our deductive system . That proof will show that the

abstract implementation of MPG is consistent with the specifications for

PEOC 1 (and any other unelaborated procedures directly contained within MPG.)

Note , in particular , that , when this proof is carried out , the deductive

system will not have to be separately informed (e.g., by means of axioms)

about the procedura l construc t PRO d . The relevant informat ion  ( ex t rac ted

from the formal parameter lists and the entry/exit assertions) will be

instantiated by the actua l values for each call , and it will have been

inserted into MPG’. (See the disc ussion about WP :CALL in Section C). This

top-down verification style is suitable when procedures contained in a main

program are ~o be explicated later. The important point here is that it will

be possible to verify the consistency of MPG with the specifications for

PROC 1 (and any other procedures contained directly within MPG ) before writ’ng

the actual code for these procedures.
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However , at some later time the human programmer/verifier will

wish to implemen t PROd 1 . At tha t time he will supply the missing body to

PROd , which might in turn contain references to other , lower—level

proced ures. In carrying out the nex t level of top—down programming and

proof , the programmer has several choices. He may wish to go back to the

original JOCIT main program and fill in the missing body for PROC 1 . Af ter

that , the nex t step would be to redo the parse and transduction of the

modified mai n program. This is , of course , the most natura l and systematic

approach. However , a more direc t approach can also be taken if one assumes

that the user is sufficiently conversant with the abstract syntax to write

the missing body for PROC 1 directly in transduced form . He can do thi s

within the VCG environment by invoking the MACLISP editor facility on the

Lisp data structure PROd , which is extracted from the main program MPG at

the time the top—le vel VCG pass is made. The editor is invoked on prod by
the commands:

(edit)
yp proc i value <esC) <esc>

whereupon the transduced PROC 1 declaration wil l  appear in “windowed ” form and
the user can replace the d ummy body by an actua l one. For example , the dummy

body might appear as “(BEGIN), ” corresponding to the JOCIT syntax , BEGI N END.

The user could use the Lisp editor ’s i(nsert ) command to pla ce the desired

bod y stat ements after the word BEGIN. (Note: this description is based on

the TECO—like string editor provided in TENEX MACLISP s ; the edit function in

MULTICS MACLISP is somewha t different in style.) The user would , probably,

however , wish to confi rm at some point that  the abstract syntax he has thus
hand—cod ed really corresponds to actual JOCIT. Thus, when he ultimately

rewrites the JOCIT main program , he should redo the parsing and check that

the parsed PROC 1 is identical to the one he wrote directly. The virtue of

working directly in the abstract syntax is tha t one may, thereby, eliminate

several iterations throug h the parser. This would be the case if the code

for PROC 1 requires several successive cha nges before it is ve r i f i ab l e .

It should be noted tha t  this  method of elaborating a procedure
declaration does not require the user to edit the abstract main program

within which the procedure is declared . The corresponding editing of the
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main program will occur automat icall y because Lisp usec structure sharing ,

and PROC 1 simply points to the procedure declaration substructure under MPG .

Thus , when PROC 1 has been proved correct at the next lower level of

verification , the user c~n rewrite the JOCIT program in accordance with the

-
‘ 

edited MPG , reparse the program , arid compare the resulting parse , say

- 

- 

newparse , with the edited MPG (by means of the MACLISP function EQUAL), t h u s :

(equa l MPG n ewparse)

The nex t level of verification consists in generating the VCs for PROd .

This is the step that was deferred in generating only the top—level VCs for

MPG . The user can do this either by again calling VCG on MPG or simply by

invoking VCG:ALL (which handles VCG for main programs , subprograms ,

funct ions , procedures , and closes) on PROC 1 (and any other procedures

directly contained in MPG). If he elects the first option , the user will

recompute the same top—level  VCs ( i . e . ,  MPG ’) and wil l  again receive a

message regarding the computation of VCs for PROC 1 . This time , he should

answer “yes” to the system ’s query. The body of PROC 1 will then be analyzed

by the ve r i f i ca t ion  condition generator , and VCs for it wil l  be computed and
stored under the variable PROd ’. If the body of PROC 1 contains

( sub ) procedure declarat ions , the process a l ready described for the MPG level
will be repeated , with the same user options , at the level of the procedure

PROC 1.

When all procedures , subprocedures , sub—subprocedures , etc.,

have been explicated in this way down to the level of JOCIT pr imi t ives , the

user will have in hand a set of pointers to the main program and all of its

subent i t ies .  Their names appear on the global var iable , P ROGRAMSLIST . He
will also have a set of pointers to all of the Vds that have been generated .

The names of these pointers appear on another global list , VCSLIST. These

lists record for the user (and for the file—making mec hanism) what portions

of the main program have been analyzed by VCG . Upon each completion of VCG ,

the user is asked whether he wishes to save the computed VCs on a file

(together with the main program). This option need not be exercised until

the entire top—down VCG process is complete , unless it is desired to save the

partial results. Whenever the answer is “yes ,” a MACLISP-loadable file

containing MPG and all VCs determined up to tha t time will be stored in the
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user ’ s directory under the name MPG.VCS (where MPG is the name of the main

program) .

The user need not defer verification of the VCs until all VC

levels have been computed . In fact , there is likely to be some advantage in

using the deduot ive  system to check the va l id i ty  of VCs at each h ierarchy

level before proceeding to the next. In this way the user can detect

programm ing errors before refinement has gone too far. In this case , the

user should follow the following protocol :

Answer “yes” to the file—making query at each stage of refinement
of his program .

Exit to the Tableaux system environment.

Load the file ‘.VCS that has just been written by VCG , and invoke
NEWPROOF successively on each clause of each entity (e.g., MPG’, or
PROd ’, etc.) in the VCSLIST.

Reenter the VCG environmen t , and proceed to the next stage of
refinement.

b. Bottom—Up Verification

We have just described how program verification concurrent

with design can be carried out under our system according to a top—down ,

successive refinemen t paradigm . The corresponding bottom—up process is

supported equally well by our system ; however , the purely bottom—up approach

appears intrinsically less attractive than the top—down method for reasons

independent of our Implementation. These reasons will become clear in the

discussion that follows . In summary, it will be established that some top—

down thinking is a necessary part of bottom—up design/verification.

To carry out a bottom—up design with concurrent ver~ fication , - - -

the user must begin with some notion , at least , of the overall procedural

hierarchy. He must , for example , have in mind some of the ~ower—level

proced ures tha t will ultimately be needed in his overall design. The user

begins with a tentative design for one of the JOCIT procedures at the lowest

level of the planned hierarchy. This procedure is first parsed and

transduced by the method s described in Section II, Subsection B. The

specifications attached to this procedure should , however , be adequate to
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prove Vds for the next  higher  level of the procedura l hierarchy. The user

must be aware in advance of how he plans to use each procedure at the next

higher level. A safe strategy is to specify low—level procedures with the

strongest possible assertions——tha t is, to include in the exit assertion all r
properties of the exit parameters that could possibly be proved , and to make

the en t ry  asser t ion as genera l ( i . e . ,  as weak ) a s possible , subjec t to the

correct func t ion ing  of the procedure . An example of the latter would be to

refrain from restricting the domains of input parameters unless this is

ab solutely  required by the functions and operations to be contained in the

procedure bod y. VC genera t ion  is car r ied  out for this low—level procedure f
(and others at the same level) exactly as described for the top—down process

in the preceding subsection . These VCs are then proved by means of the

ded uctive system , just as under the top—down process. This completes the

design , implementation , and proof for the lowest level .

The user then proceeds to the next higher level by writing

JOC1T procedures tha t call the lowest—level procedures. These next—level

proced ures are  subjected successively to pars ing/ t ransd uction and VCG.
Howev~r , the analysis of the low—level procedures by VCG can be inhibited (by

answer:nig “no” to the system—generated query) because VCG has already been

carried out on these proced ures. The user also allows the VCG system to make

a file containing the verification conditions for tha t level (accumulating

those at the lower levels as well , if he wishes——this is determined entirely

by the names appearing on PRUGRAMSLIST and VCSLIST). Finally, the tableaux

system is applied to the new VCs. In this way the user will build up his

JOCIT program from the bottom , verifying at each stage tha t the visible

program is consistent with the assertions at that level and with the (already

proved ) properties of the procedures it calls. When the top level (the final

program) is reached , verification of the top—level VCs (e.g., MPG’) by

Tablea ux shows that the main program is consistent with its assertions , and

this completes the proof. It would be wise at this point to regenerate all

the VCs from the top level on down , as a double check that the bookkeeping

operations in making successive VC files have not gone astray. These

regenerated VCs can be checked mechanically against the saved Vds that were

proved by tableaux during the bottom-up process. The means for doing the
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checking were described in the preceding subsection in relation to comparing

two parses.

In summary, it should be clear from the foregoing disc ussion

tha t this  process of building up a program by wri t ing successive layers of
procedures starting from the lowest level and working up demands a good deal

of planning and forethought by the programmer . The general plan for the
overall program must in i t i a l ly  be , a t least , in the back of the programmer ’s
mind , If not well thought out . Moreover , entry and exit assertions for
procedures at each level must reflect  their anticipated uses at the next
level . Final ly,  the data struc t ures involved in low—level procedures will
have to reflect the data struct ures at the highe r (as yet undesigned ) levels
if the technique is to succeed . This last observation is relevant to

considerations of data abstraction which we have necessarily excluded from
consideration in this project. The reader is referred to [13]  for a detailed
discussion.

To conclude this subsection we should note that when our

system is used purely for ex post facto verification of an existing program ,

then it is essent ia l ly  i r re levant  whether proof is carried out by the top—
down or the bottom—up process. The only difference is the order in which

procedures of the hierarchy are verified in terms of the specifications for

lower—level procedures.

2. Ih~. ~~~ ~~ Dummy Assertions

Nex t , we discuss some additional features that were not covered in

the preceding discussions of the top-down and bottom—up protocols. It is

often Inconvenient to includ e detailed assertions ( especially for the loop
assertions) in the early stages of top—down verification. One reason for
this is that they may have to be modified when the program is debugged .

However , the parser is re la t ively insensi t ive to the syntactic forms of
assertions. In consequence , one may use one or the other of two informal

kinds of “assertion abstraction ” to simplify or curtail iterations through

the parser.
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In the first method to be described , the user supplies only

mnemonic JOCIT names for one or more of the assertions. These names will

later be replaced by fully explicated Boolean forms. The second method is a

refinement of the first wherein dummy predicate forms are used for the

assertions , but where the dependence of these predicates on selected program

variables is made explicit.

We begin with a description of the first technique . The user

writes a top—level program in JOCIT w i t h  all  loop assertions (and perhaps

also the input  and output asser t ions)  in the form of single mnemonic words ,
e.g., INASRT , OUTA SRT , LOOPASRT 1 , LOOPA SRT2 , etc . Of course , these words

must be acceptable to JOC1T syntax , so only legal JOCIT names are allowed .

The following forms are  permitted , respect ively,  for loop assertions , inpu t

assertions , and output assertions:

ASSERT LOOPASRT1 $
ASSER T IN 1NASR T $
ASSERTOUT OUTASRT $

The parser/transducer will convert these assertions , respectively,

into the t ransduced forms :
( ASS ERT LOOPASRT 1)
( ASSER TIN INASRT )
(ASSERTOUT OUTASET)

One advantage in deferring the choice of expl ic i t  assert ions is

that the user can thereby concentrate initially on achieving syntactic

correctness for the JOCIT program itself , apart from the assertions. Another

advantage is that he can execute VCG on this dummy—asserted program to check

the flow of control between assertion points. This process is equivalent to

a limited symbolic execution of the program in which mainly the control

semantics are checked . The checking is not , however , automatic; the user

must examine the generated VCs by eye and decide whether they conform to his

expectations. He can check that the correct number of VCs is being

generated . (This number will not change when the assertions are later

explicated). He can also check the branch points of the program to see that

at each branch , control is being transferred to the expected assertion point.

Branch points (stemming from IF and IFEITH statements) correspond In the VCs

to forms such as:
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( AND (IMPLIES test-condition DUMM Y-ASRT 1)
(IMPLIES (NOT t e s t—condi t ion )  DU M MY — ASRT2 ))

These dummy—name assertions are not meaningful for the final VCG process

becauze the dependence of the assert ions on the program variables must be
made explicit before the VCs will reflect partial correctness.

At this point , the user can apply either of the following two

strategies or , as we shall see, some convenient combination of the two:

* Introduce explicit assertions in place of the dummy names used
thus far , or

• Introduce dummy functional forms that parameterize the
assertions without committing the user to specific functional
forms.

The second of these strategies is the method of dummy predicate forms which

we mentioned at the beginning of th i s  subsection. The choice between these
modes will depend on the user ’s confidence in getting the right assertions

quickly. If he is confident in his ability to do so, he should write

assertions (in abstract syntax) using the program variables and bind these

assertions to the corresponding Lisp atoms used as d ummy assertions. For

example , the user might choose to d e f i n e  LOOPASRT 1 completely by typing in:

(S ETQ LOOPASRT 1 ‘ ( A N D  (GTQ XX 0)  (LT Q XX Y Y )  (LT YY N N ) ) )

He then need s to modify the transd uced main program (MPG), wher e LOOPASRT 1

appears , by expanding LOOPASRT1 in accordance with this definition. This is

most easily done by typing :
(D SUBST LOOP~ SR T 1 ‘LOOPASRT l M P G ) .

Each dummy assertion used in MPG must be dealt with similarly. As

a result , MPG will be a version of the transd uced MPG containing fully

explicated assertions. This version can then be subjected to the generation

of VC~ , viz , by calling (VCG MPG ) .  Observe , too , tha t  if these dummy

assertions were buried within subprocedure s to MPG , any existing bindings to

these subprocedures wi l l  be lef t  in tac t  because DSUBST uses the same

structure sharing as the editor , i.e., it does not make copies. The same

desirable result holds when the I~ UBST is carried out at  the level of a
subprocedure , i . e . ,  the mai n program (or any procedures abov e the DSUBST’d

procedure ) will be altered correspondingly.
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On the other hand , the second mode for instantiation of dummy-name

assertions permits the user to approach the constr~uction of loop assertions

(and entry/exit assertions) in a more grad ual manner . The technique is

similar to that of the first mode except that the user need only supply the

appropriate program variable names for each dummy assertion , leaving the

funct ional  forms of the assert ions to be determined l a te r .  For example , the
loop assertion , LOOPASRT1 , might be defined by typing :

(SETQ LOOPASRT1 ‘(LA l XX YY NN))

where the user anticipates tha t only the variables XX , YY , NN will be needed

- 

— 

in the ultimate assertion , and he leaves the form of the dummy predicate LA1

to be determined later . After all the dummy—name assertions have been

defined either in this partially expanded form or by explicit forms, and the

appropriate  DSUB ST operations have been carried out , VCG may then be invoked

on the program . The user needs to examine the resulting VCs closely to

determine the functional forms for the dummy predicates LA1 , etc., that

satisfy these VCs. In general this is a difficult process , but the human

program verifier should be able to bring to bear his understanding of the

program and its intent to facilitate the task. In fact, he may combine the

two modes of instantiation by writing partial explications for some

assertions in such forms as:

(SETQ LOOPASRT1 ‘(AND (GTQ XX 0) (LTQ XX Y Y )  (LA11 YY NN))).

Here , the user presumably knew (or guessed ) the relations among 0, XX , and

YY , but was unsure of the proper relation between YY and NN. By leaving that

portion of the assertion in parameterized dummy form , he may be able to

determine quickly from the VC~ tha t the appropriate relational operator is LI

(and not , e.g., LTQ). 
—

The reader is referred to [6] for a more detailed discussion of

techn iques for genera t ing adequate induct ive  asser t ions.  In particular , the

method of finite difference equations (described there) is applicable to the

invention of many types of algeb raic invariants.

_ _  
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3. User-Defined Constructs j~ ~~~~~~~~ 
Assertion Lan~ ua~ e

In the immediately preceding discussion , we have described some

user—oriented features that enable a human programmer/verifier to work with

dummy assertions during the process of writing and verifying a program . By

using those features he is , in effect , creating user—defined predicates of a

very local and temporary sort. These assertion forms disappear before the

final VCG process and , therefore, play no part in the actual deductive proof.

In contrast , we next describe a mechanism whereby the user may introduce

formal definitions for constructs that he may wis h to use over a considerable

period of time for verifying different programs. The algebraic simplifier

contains built—in features (described below) tha t provide the system user

with means for creating his own assertion language of functiona l (and
‘1 predicate) abstractions and integrating them into the deductive mechanisms.

The assertion language accepted by the deductive system is thereby made to be

user—extendible. See also, [7] , pp. 71—7J4 , for a description of the RPE/1

version of this feature.

Assertions written in terms of JOCIT primitives tend to be rather

lengthy, even for small , “toy” programs. In part , this is because the

relational primitives (the equality, nonequality, and inequality relations)

are at too low a level . For many programs one needs to have relational

abstractions concerned with higher—level data structures , e.g., arrays ,
files , tables , records , etc. One set of facilities for introducing such

abstract ions ex ists in the Ta bleaux syst em ’s mechanism for invoking lemmas

(see Section B).

However , invoking axiom s for each occurrence of some user—defined

construct can prove to be excessively tedious in running the deductive

system . For one thing , the user must supply instantiations for each axiom

invocation. We could , for example , handle deductions about the JOC1T

intrinsic function for absolut e value (ABS) entirely by introducing the

a x i on:
(FORALL X ( AND (IMPLIES (GTQ X 0)  (E Q X (ABS X ) )

(IMPLIES (LT x 0) (EQ (M iNUS X )  ( ABS X ) ) ) ) ) .

This axiom tells the deductive system all it needs to know about the function

ABS. In practice , this would make proofs even of such elementary facts as 
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(EQ (ABS (ABS (ABS (ABS X)))) (ABS X))

rather tedious . The tableaux proof of this fact would require numerous

separate instantiations of the above ABS axiom , each time with different

user—supplied bindings.

An alternative we have investigated is to incorporate rewrite rules

for these functions into the simplifier. The rule for ABS could contain the

knowledge that , for numeric x ,

(ABS x) if x>O then x else —x ,

and also the knowledge that (ABS (ABS x)) (ABS x), even though this fact is

deducible from the definition , and :s, therefore , redundant. Any invocation

* of ALGEBRA from the deductive system then automatically attempt s to simplify

forms of the type (ABS ‘ ) by rewriting them . In this approach instantiation

• is automatic , unlike the application of axioms by INVOKE ~n the Tableaux

subsystem . Similar rules have been built into the simplifier for functions

such as MAX , MIN , and , of course , for the algebraic func t ions  PLUS , TIMES ,

SUBTRACT , MI NUS , DI VIDE , and EXPT (which are primit ives :n JOC1T , under th e

usua l infix operator nam es, + , • , — , I , and **) as well as for the relational

operators , EQ, NEQ , LT , GT , LTQ, and GTQ (corresponding to the JOC1T in fix

primitives , EQ, NO , LS, GR , LQ , and GO).

It is highly desirable to allow the user to create h~ s own rewrite

rules for the simplifier to facilitate deductions for new, user-defined

abstractions without the need for invoking axioms.

In the fast string search program that we have verified (see also

Section B), extensive use was made of user—defined abstractions as parts of

the program ’s loop assertions. For example , (LENGTH string), (STRPO S stri

str2), and (SUBSTRING string k 1) all figure in one or more asSertions.

STRPOS is central because the program is, in effect , supposed to compute

(STRPO S pat str) the first position , j, in str where pat matches the

substring of str from j to (LENGTH pat)— 1. The proof shown in Section B

depend s on the invocation of several plausible axioms relating these three

abstractions. An alternative is to incorporate directly into the expression

simplifier enough information about these string function abstractions to

permit the simplifier to handle some or all of the proof. For example , the

axiom , SUBSTR:NIL:
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(IMPLIES (GT K L) (EQ (SUBSTR1NG str k 1) NIL))

could readily have been set up as a conditional rewrite rule for SUBSTRING.

In order to provide the system user with a convenient facility for

constructing such rewrite rules, our simplifier contains a function , SPECIFY ,

which automates much , but not all , of the effort entailed in this

construction. See [7), pp. 71-73 for a discussion of SPECIFY and how it is

used .

To construct a rewrite rule for SL~BSTRING the user calls SPECIFY
with arguments supplying the name of the construct (i.e., SUBSTRING ) , a
formal parameter li&t (in this ease , str , k , and 1), and a list of special

cases under which specified simplified forms are to be returned by the

simplif ier .  There is also an optional argument that permits the user to

• specify (when appropriate) tha t the function has certain special properties ,

such as cominutativity. SPECIFY then constructs a rewrite rule SUBSTRING$

that combines these simplifications in a single Lisp function . This rule is

invoked whenever the simplifier sees an expression of the form (SUBSTRING * ‘

Our work with this part of our system has pointed up some problems

associated with the use of systems of rewrite rules , and with SPECIFY in

particular. First , the funct ion , SPECIFY , is far from being an automatic

rewrite rule generator. It lacks the ability to perform pattern—match

compilation , which would be a very desirable feature. With pattern matching

in the construction of rewrite rules , we could simply input a set of

algebraic specifications to this new system , and have it construct for us the

detailed Boolean tests needed to match these specifications. Given a

suitable parser (e.g., one constructed by the parser-generator technique) one

might even input algebraic specifications in a non-Lisp syntax . A second ,

more general , problem associated with this kind of deduction is that

simplifier rules need to interact in peculiar ways, e.g., since the functions

ABS, SQRT , and (TIMES x x) are all inherently nonnegative , one would like the

forms, (ABS (ABS X)), (ABS (SQRT X ) ) ,  and (ABS (TIMES X X ) )  simply to return
the arguments to the outermost ABS. However , in order to make this fact

known to the rule for ABS , one needs to put into ABS$ a great deal of
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information about other functiona l constructs. Moreover , when the system is

extended by adding new user—defined constructs , the possibilities for such

interactions may multiply rapidly. It is likely that these considerations

set some sort of practical limit to what one can conveniently do in deduct ion

simply through the use of rewrite rules. Fortunately, our system is also

able to handle arbitrary in format ion  in the form of predicate calculus axioms

when the capabili ties of algebraic simplification are strained by the above

considerations. The two approaches complement one another in nice ways. It

is likely that both types will continue to play a role in both automatic and
-
~ semiautomatic deductive systems.
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V RPE/2 ON RADC —MULT ICS

A. Introduction

Task D (Item ~4 .1. -~) of our Wor k Statemen t requir es us to “investigate

the t ransferabi l i ty  of the verif icat ion files by installing as muc h as

necessary of the SRI PDP— 1O files on the Honeywell 6180 MULTICS system to run
- 

- a simple JOVIAL (J3) program for verification.” Although we planned

initially to transfer the RPE/1 system to the RA DC —M ULTICS computer to

satisfy this requirement, it proved possible to transfer the entire RPE/2

verification system and use it for the demonstration run.

The files and sample programs required to carry out this verification

are now part of user Spitzen ’s file directory on RA DC—MULTICS. In this

chapter , we first describe the translation of portions of the original

INTERLISP verifier into the MACLISP language available both on SRI’s KL—2O

com puter and RADC ’s Honeywell 6180 MULT ICS system . We next describe the

t ransfe r of the resulting MACLISP programs to RAD C—MULTI CS . Finally, we
describe the JOVIAL (J3) program that we verified at RA DC—MULTICS. Appendix

C gives detailed instructions for reproducing this verification run.

B. Translation 
~~~~~~ 

MACLISP

As indicated above, we initially set out to translate the existing RPE/1

verifier from its implementation in INTERLISP into a version of MACLISP

available on the SRI KA— lO computer . As the translation effort progressed ,

it became clear that with relatively little extra effort we could carry on

most of the development work for the RPE/2 system directly in MACLISP. From

about June 1976 on , that strategy was followed . As a result , by the end of

1976 we had a usable MACLISP implementation for RPE/2. Sonic changes were

carried out beyond that time, but the System framework was essentially

complete.
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The MACL ISP system or iginal l y available on the KA— lO was Version 1132 ,

running under TENEX. This has been successively replaced by Version 1251 and

most recently by a version called 1MID or 1258. Observable differences

be tween these Tenex MACLISPs have been negl igible  in their effect on our

work. Apparen t ly ,  the implementers  of th i s  language have been concerned w i t h
various improvements  in ef f ic iency of speed , storage , and garbage collection ,

but they have maintained upward compatibility between versions. In fact ,

code compiled under Version 1251 appears to run properly under the newest

(1MID—1258) executive and even on our new machine (SRI—KL ). Fortunat ely, we

have not been plagued by compatibility and conversion problem s as a result of

these language arid mac hine changes .

A sec on d , r e l a t ive ly  minor conversion was involved when we mounted th~—

MAC LISP syst em on the  RA DC—MULTICS (Honeywell 6180) computer . The MACL iSP
system on tha t machine was , n a t u r a l l y ,  a MULTICS version . I n i t i a l l y ,  we had
some problem s in get t ing accustomed to MULTICS conventions , but these

problems largely solved themselves in time. Apart from minor differences in

the I/O features and certain functions in MULTICS MACLISP which had to be

synthesized at SRI , we encountered no problem s in th i s  second phase .

The s t a r t i ng  point for the MACLISP RPE/2 system was taken from the RP E I1

INTERLISP files for the tableaux deductive system and the algebraic

expression simplifier , the latter a subsidiary package used by the tableaux

system . An improved Presburger mechanism was rewritten for RPE/2 in

INTERLISP and converted to MACLISP in November—December 1976 by special means

described below. The VCG subsystem was begun in INTERL1SP , carried about

half-way to completion (provid ing only the basic core constructs), t h en

translat ed into MACLISP. This core of the final MACLISP VCG was used in the

RADC—MULTICS sample demonstration . VCG was completed early in 1977 entirel y

in MACLISP by making modifications and additions to the core VCG subsystem .

The t ableaux deduct ive  system was s imi l a r ly  developed in MACLiSP from the

initial MACLISP version.

The parser / t ransducer  represents  a d i f f e r e n t  sit u a t i o n , b e c a u se it is a

machine—synthesized file package; its mode of construction is described in
general terms at the end of this subsection . For deta~ 1s of the
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parser/transducer the reader is referred to Section lI—B . Documentation for

MACLISP is com par a t ively poor , and somewha t out of date; the most recent

definitive description is [12]. Fortunately, we were also able to obta~r.

from MIT a draft document containing detailed com parisons of MACLISP wi th

INTERLISP. These notes supplied , for each of the major functions of

INTERLISP, a description of the corresponding feature in MACLISP , or——if non e

existed——with equivalent MACLISP code. We careful ly tested each such
— equivalence before adopting it.

- 
- We now describe brief ly th e principa l differences between INTERLISP and

MACLISP that a ffected our translation . In addition to these , there are many

other differences tha t affect the form of a user ’s commands to the system .

For example , MACLISP lac ks the evalquote mode , whic h le ts the INTERLISP user
- - - • type FOO(X) with the same effec t as the more cumbersome (FOG ‘X). Making

fil es and sav ing core image s differ not only be tween INTERLISP and MACLISP
but also among d ifferent MACLISPs and different machines. Conv entions for
user interrupt s (e.g., the use of control cha racters) are different between

INTERLISP and MACLISP , but fortunately they are fairly standard between

MACLISP implementations.

The following very useful functions of INTE RLISP are entirely lacking in

MACLISP (or are so different that they must be hand coded):

ADDPROP , AL .PHORDER , ARGLIST , ATTACH , CHANGEN AME , CHANGEPROP , COPY ,
COUNT , DEFLIST, DR EMOVE , L~ UBST , EQP, E~~ENGT H , EVERY , FASSOC ,
FILEPOS, FNTYP , GETD, INTERSECTION, LCONC , LDIFF, LISTP, LITATOM ,
LOADFNS , LOADVARS , MAKEFILE , MOVD , NCHARS , NCONC 1 , NEQ , NLISTP ,
NTH , PACK , PACKC , PROG 1 , REMOVE , SELECTQ , SOME , SPACES , SUBPA IR ,
SUBSET , TCONC , UNION, UNPACK.

To avoid confusion , in the remainder of this section we will refe r to

INTERLISP functions in uppe rcase cha racters and to MACL .I SP funct ions  in

lowercase . Note tha t some names occur in both lang uages , but with different

meanings.

Most of the funct ions listed were created in terms of MACLISP pr imit ives
and saved in a basic Library Functions f i le  ( L I B . M A C ) .  This f i le  also
con tains a few other functions so widely used throughout the verif ier that
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they belong in a c ommon library (even though they are not p r i m i t i v e  to

INTERLISP). LIB.MAC also contains some versions of MACLISP primitives so

modif ied  as to behave like their INTERLISP analogues. For example , (FIX

— 1 . 5)  —2 , whi le  ( f i x  —1 .5) — 1; hence fixx was defined to act like FIX.

Similarly, since (zerop ‘a) causes an error interrupt wh ile (ZEROP ‘A) NiL ,

a func tion , zerops , was defined to match ZEROP. The library function file

package LIB.MAC was later compiled into a binary file LJB.FAS.

Man y of the differences between MACLISP and INTERLISP stem from

fundamental differences in function definition and concept . For uncompiled

functions , MACLISP has only the types “ expr ” a nd “ fexpr ” (c orresponding to
INTERLISP types , EXPR anc ?EXPH*). MACLISP’s exprs also cover what are

p - cal led EXPR*~~s in INTERLISP. There is no MACLISP analog to INTERLISP

‘FEXP R” . Whereas INTERLISP stores function definitions in a special

“function cell” , MACLISP stores them as expr or fexpr properties of the

atomic function symbol. In MACLISP , calls to exprs must be supplied with

ex a c t l y  the r igh t  number of a rgumen t s , un l ike  the sometimes hand y (b ut o f t en
dang erous) INTERLISP default: binding missing arguments to NIL.

Fortunately, J S. Moore developed a superb translation tool , called

MACLISPIFY. A portion of the small developmen t cost of this support software

was born e b~ anoth er project. MACLISP1FY ic  best described as an interactive

translatcr-bui -e r; i t  is coded in INTERL I SP .  Source code and compil ed

versions are on directory <MOORE>MACL1SPIFY on SRI-KL . In its pristine

state , MACL I SP 1FY is acq ua in t ed  w i t h  the convent ions  of I NTERLISP , i n c l u d i n g
the names , numbers of arguments , and types of all INTERLISP functions.

MACLISPIFY allows the user , as he proceed s, to build up a set of’ translati~~n

rules (called “translation augments ”) between lN TEi i L~ : and any other Lisp

dialect. Moore also supplied us with a set of primitive translation augments

for many of the most common MACLISP functions (including the special forms

discuss ed below). The user of MACL1SP1FY can simply turn it loose on a set
of funct ion definitions in INTERLIS? by typing :

(APPLY ‘MACLISPIFY fnslist T)

where fnslist is bound to the list of function names. MACLISPIFY is then

invoked successively on the definitions of each function on fnslist . The
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user is asked whether he wishes MACLISPIFY to recursively pursue tne

Maclispi fication of subroutines. He can reply either A(sk me each time for

permission to Maclispi fy them ), M(aclispi fy them without asking), or D(on’t

Maclispi fy them). When MACLISPIFY encounters an expression whose CAR lacks a

translation rule , it asks the user if he wishes to supply one. The user ’s

options at this point are to respond with one of the following :

7
<linefeed>

<function-name>

N ( o )  :> Always  bring it to my a t t en t ion .
M (aybe l a t e r)  :> The form will be brought to your attention when

the parent form has been Mac lispi fied . No augment is created
• for this function symbol now , and you will be asked this

question again the nex t time the function symbol is seen .

• Y ( e s )  :> causes the Edito r to be entered wi th  a standard augment  -:
template.

The f i rs t  option converts the IN TER LI SP name to i ts  lowercase (MACLiSP )

equivalent , and also proceeds to “Maclispi fy” each argument expression. This

user response is appropriate much of the time , i.e., whenever MACLISP uses a

func t ion  w i t h  the same name and semantics as INTERL IS? . Examples  of t h i s
are: CONS—>cons , LIST—> list , CAR— >c ar , etc . All such obvious instances have - -

already been provided with transd uction augments in the initial set; thus ,

the user would not be asked this question for functions like CONS , LIST , CAR ,

and CDR——on ly for functions lacking a translation augment.

The second option is used when there is a semantically equivalent

function in the MACLISP environment with a different name than the INTERLISP

function to be translated . The pair MEMB, memq is an example.

Neither of the first two options is appropriate when INTERLISP and

MACLISP have functions with the same names but different semantics. The

mapping functions , MAPCAR , MAPC , MAP , MAPCON , and MAPLIST are good examples

for several reasons. ~‘irst , the argument order is reversed :n MACLISP , i.e.

(MAPCAR LST ‘ATOM ) is correctly rendered as (ma pcar ‘atom 1st), and similarly

for the oth.-’r mapping functions. Also , mapcar , mapc , etc., can take any

numb er  of l i s t  a r g u m e n t s ;  tha t number  mus t  be equa l to the  number of

arguise its required by the functional argument. On the other hand , INTERLISP
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mapp ing functions can take an optional third (functional) argument to be used

(instead of the default CDII) for iterating down the list. (A minor

difference: the sixth mapping function , MAPCONC , corresponds to mapcan ,

instead of “mapcoric” .) Our version of MACLISPIFY uses one fairly complicated

augment , {STANDARD-MAP—AUGMENT} , to cover all these contingencies for the six

mapping functions simultaneously. For example , when MACLISPIFY sees an
/

I N T E R L I S P  form l ike ( M A P  LST ‘ATOM ‘ C D D R ) ,  the warning message is printed out

on the user ’s terminal: “MACLISP mapping functions do not accept the third

INTERLISP  a r g u m e n t . ”

A great virtue of MACL1SPIFY is that the user i n t e r a c t i v e l y  bu ilds  up a
set of t r a n s l a t i o n  r u l e s  as he proceed s to translate his 1NTERLISP code.

Once a t r ans l a t i on  r u l e -  has been supplied to it , MA CL I SP I FY w i l l  i r  tt~-

f u t u r e  a u t o m a t i c a l l y  use t h a t  ru le  to perform translations for tha t funct:cr

symbol . The MACLISP IFY system is extremely easy to use by virtue of the

human engineering that has gone into its design. At places where the user

might be in doubt as to how to proceed , typ ing “ ?“  wil l  te l l  him wha t
options are open to him at  t ha t  po in t .

MAC L1SPIFY stores t r a n s l a t io n  au gmen t s  as no—argument  f unc t i on
definitions for INTERLISP names surrounded by curly braces , {}.  For example ,

the simplest possible augment (created whenever the user uses the <linefeed>

lowercasirig option) is (LAMBDA NI L. form). Thic is the augment for CONS ,

LIST , CAR , CDII , etc . Augments of’ the second type (created by <function—

name>) have the form , e.g., ( MEMB ) (LAMBDA NIL (CONS ‘memq argist). More

compl icated augments than these must be written by the user , working within

the INTERLISP ed itor . - —

For example , the translation augment:

(PUT) (LAMBDA NIL (LIST ‘putprop arg l arg3 arg2 )

would be aritten by the user to indicate that the transla tion for (PUT A I V)

should be (putprop a v i). A useful convention with MACLISPIFY is that A RG 1 ,

ARG2 ,... denote the original (INTERLISP) arguments to a form , while arg i ,

arg2,... denote their Maclispified versions. A similar convention apphes

to the pairs , FNNAME , fn n a m e ;  ARGLST , arglst ; and FORM , form . All of these

names are used freely by the translation functions , with FORM being bound to
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the form currently under translation and FORM (FNNAME A R G 1 A R G2 . . .)

(FNNNAME . ARGLST).

The so—called special forms of INTERLISP , suc h as SELECTQ, COND , and

PROG , which do not first evaluate (all) their arguments (or which evaluate

them in a nonstandard order), need special treatment for Maclispification .

MACLISPIFY provides built—in handling for such forms. Note , too , that

IN TE H L I SP ( but not MACLISP ) al low~, in i t ia l iza t ion  of PROG variables in the

declaration clause . Hence , the INTERL 1SP code:
( PROG ( ( X  1 ) ( Y  LST ))  . . .)

is automatically rewritten as:

(prog (x y) (set• q x 1) (setq y 1st) ...)
by MACLISPIFY.

Finally, let us mention the translation of CLISP contructs into MACLISP.

CLISP forms (see, e.g., [17)) provide a kind of “unofficial” INTERLIS? in

which a user can type in rather free form expressions (e.g., a great variety

of iterative statements , pattern—matching expressions , infix forms, etc.) to

INTERL I SP , even though these forms are not directly comprehensible by the

INTERLISP interpreter or compiler. They are intercepted by the DWIM (“Do

Wha t I Mean ”) mechanism (part of the INTERLISP Programmer ’s Assistant) and

translated into standard INTERLISP before interpretation. DWIM contains

canned rules for expanding CLISP iterative forms, e.g.,

(for  X from 1 to 100 whi le  ( NOT ( FOO X ) )  do . . .) ,

into explicit PROG loops. MACLISPIFY uses this DWIM compiler first to

t r ans la te  CLISP forms into INTERLIS ? , but it also leaves the original CLISP

in place as a comment in the expanded code if the user wishes. Then the main

body of MACLISPIFY t rans la tes  the INTERLIS ? code , leaving the comment s t i l l
in the MACLISP t r ans la t ion  for c l a r i ty .

The MACL1SP1FY system also asks the user to specify , for each MACLISP
function name , whether it refers to a S(ystem) function , a L(ibrary )

func tion , a 1J(~ er
) funct ion , or simply to F(orget it!). In this way,

MACLISPIFY is able to allocate it to a suitable list for filing . “System ”

functions are supposed to be the primitives of MACLISP (or whatever i~.isp

dialect one is translating into); “library ” functions have already been

~
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described ; “us er ” functions are supposed to be part of the package be:rig

translated . When MACLISPIFY exits, it creates both an INTERLISP file w:th

a l l  of the  i n f o r m a t i o n  tha t has been processed and a MACL ISP-loadable file

w i t h  d e f i n i t i o n s  of f u n c t i o n s  for the  t r a n s l a t e d  code in  the form of putprop
-s statements. In t he INTE II LISP file , the definitions of MACLISP functions are

saved as expr  or fexpr  propert ies  of the ( lowercase )  f u n c t i o n  names . A l l  of
the translation augments (the initial set plus augrn .— t t s  created by the user

during the session) are also saved on the INTERL1SP f i le  for fu t ure use .

We now discus s the parser/transd ucer “tr~ r~rl~~t i on ” process. The d~-tc ~ is

of our cons t ruc t i on  of the  p a r s e r / t r a n s d u c e r  are g:ven ~ S e ct i c n Il—B .

• Since the parser/transducer is a machine-synth~- -~-.zed s-~h~ ysterr ~f t he

verifier , it would have been inefficient to produce first a parser/transd -~ -er

in IN T E R L I S P  and  then  t r a n s l a t e  i t  i n to  MACLISP. Instead , the parser—

gen erator ( an  INTERLISP software tool that produces the parser/transducer

from a syntactic description of the target language) can produce either an

I N T E R L I S P  or a MACL I SP parser  for the target  l anguage .

C. T r a n s f e r  ~~ IIADC —M U LT I CS

Having obtained MACLISP source code for the verification system , we used

the ARPANET File Trans fe r Program ( F T P )  runn ing  at MULTICS to move the  source

files from the SRI KL—20 to the RA DC—MULTICS system . (Because of problems

with FTP on the KL—20, we were not able to use it to “send ” source files t o

R ADC ; a l l  f i l e  t r a n s f e r  was ach i eved by “get t ing ” files from SRI to RA DC.)

We then attempted to run the verification system composed of these

transferred files in MULTICS MACLISP. Minor problems were encountered :

* A number  of p r i m i t i v e  func t ions  in MULTICS MACLISP , for example ,
charpos , must  be syn thes i zed  in KL—2 0 MACLiSP.

~ The input and output pr imi t ives  of MULTICS MACLISP and KL—20
MACLISP use slightly different conv entions. Also , the file
systems of the two machin es use differ ent methods for naming
files.

in a l l  cases , however , minor reprogramming sufficed tc obta in source files

tha t run c o r re c t l y  w i t h  MULTICS MACLISP .
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D. SamDle Verification ~~ RAD C-MUL T 1CSL

The program that  we verified is given in Appendix C, Part 1. It

searches for a floating point number VV in an array AA of length 1000. If

the number is found w i t h i n  the in i t ia l  segment of AA of length NN , the

program halts with the Boolean FLG set to 1 and the integer LOCN ~et to the

first index of VV in AA. If the number is not fo und in this  segment , the

program halts with FLG set to 0 and the temporary variable INDEX set to NN+i.

These conditions are described in formal te rms by an out put ass ertion at the
program label OUT ; the verification also requires three inductive assertions

at labels Li , L2, and L3. The entire program is 37 lines long and includes

23 lines of assertions and 1 -14 of declarations and executable code.

The f i rs t  step in ver i fying this program is to parse and transduce i t

into the abstract syntax processed by the verification condition generator.

This is done by invoking the lisp system at MULTICS and issuing the command

(load “loadjmac .mac”)

which causes the parser to be loaded into the MACLISP environment. When

loading is complete , the loading program types the message

“Ready to parse.”

The user may now invoke the parser by calling the function parse whose

single argument is the name of a file containing a JOVIAL program to be

verified . In the example , the required command is

(parse “search.joc”)

Following the parse and transduction of the source file , the variable

parse is bound to the resulting abstract form . Because we were running with

a limited number of available segments , it was not possible to configure a

single M~CLISP environment containing the entire verification system . At

this point , we must , therefore , send the abstract form to a file , which we do

by Issuing the commands

(setq svars ‘( abs t r ac t s ea r ch) )
(setq abstract search parse )
(mfile s)

This causes the file s.mac to be created containing the abstrac t syntax and

thus completes this phase of verification. The abstract syntax for the

sample program is given in Appendix C, Part 2.
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Next , it is necessary to generate verification conditions from the

abstract syntax . We must first escape from lisp to the MULTICS command level

and invoke a new lisp environment. This environment is configur ed for

generating verification conditions by issuing the command

( load “l oadvcg .mac ”)
When the system is ready, we reload the abstract program by saying

( l oad “ s .mac ” )
arid are then ready to generate verification conditions by commanding

(vcg abstractsearch)

which results in the binding of the variable abstractsearch* to a list of the

ver ification conditions for the program — f ive  in t h i s  e x a m p l e .  We then

complete the verification condition generation phase by adding the elements

abstractsearch* , al , a2, a3, a14, and a5 to the list svars , binding al , a2,

a3, a14, and a5 , respectively, to the five elements of abstractsearch* , and

commanding
(mfi le 5)

to write a new s.mac including the verification conditions. These five

cond itions are given in Appendix C, Part 3.

We are now ready to prove these verification conditions. We escape to

MULTICS command level , obtain a new lisp, and say

(l oad “ loadd educ t .mac ” )

to configure  an environment  wi th  the deduct ive  system . We are then ready to

prove , in turn , eac h of the five verification conditions. It turn s out that

al and aS can be proved with just a few user commands , a3 and a14 can be

proved automatically, and a2 requires a somewha t lengthy dialog . The details

are given in Appendix D, Part 14.

79



F

Appendix A

JOCIT GRAMMA R

80 

----~~ -——-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~ -~~~~~~ _ - ~~~~~_  _  _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _______ - 

‘1

Appendix A

JOCIT GRAMMAR

1 . Grammar 1~uie~

0 1 **ROOT** : : :  <p rog> RIGHT\PAD

— 1 2 <prog> ::~ <main\prog>
3 ::~ <sub \p rog>

2 14 <a\p\l> : : =  ** empty **
5 ::: ( < f st r d ot >  <aop l> )

3 6 < a lt \ s t a t>  ::: IFEITH <f>  $ <stat>
<orif\listpls> END

4 7 <aopl > ::: ** e[flpty**
8 : : =  <on amep l s>

5 9 < a s s i g n \ st a t >  ::: <var iab le>  = <f> $

6 10 <bch> : : :  B
11 : : =  CH

7 12 <body> ::~ **empty **
13 ::~ <b ody > <dc cl>
114 ::: <body> <labelstr> <stat>

8 15 <ch t>  ::: CH
16 : : :  T

9 17 <corist\list> ::~ BEGIN\ <dclpls> END

10 18 <const\listq> ::= **empty**
19 ::= <const\list>

11 20 <con stant> ::~ CHARACTE R \CONSTAN T
21 : : =  STATUS\CONSTANT
22 ::: <numer ic>

12 23 <cont ro ls>  ::: < con t ro l z2>
2 14 : :=  <cont ro ls2> ASS ERT\A S SUM E <f >

13 25 <con tr o l s2>  ::~ ALL ( NAME
26 : : =
27 ::: <f> , < f >
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28 ::: <f> , <f> , <f>

114 29 <cs ta t>  ::~ BEGI N (body> END

15 30 <dcl> ::: <const\list>
31 ::: <os\const>

16 32 <dclpls> ::= <dcl>
33 ::: <dc l~ ls> <dcl>

17 314 <dc cl> ::~ A R R A Y  NAME <intp ls> <i\desc> $
<const\listq>

- . 35 : : :  A SSERTINOUT <f> $
36 ::= CLOSE NAME $ <cstat>
37 ::= FILE NAME <bch> <file\size> <vr>

-

- 

- <record\si ze> F 1LE\STATES
NAME $

38 ::: ITEM NAME <i\desc> <p a> $
<const\listq>

39 ::: ITEM NAME <os\const> $
S 

14Q ::: PRO C NAME <parameters> $
<pddp str> <cstat>

141 ::: PROGRAM NAME $
142 ::= SWITCH NAME = ( <insdlpls> ) $
143 : :=  SWITCH NAME ( NAME ) =

( <itsdlpls> ) $
1414 : :=  <overlay\decl>
145 : :=  <str\i\decl>
146 ::: <tab l e \p r fx>  <p ackingq> $ BEGIN

<oei\decl> <oeid\sodpls> END
147 : : :  <tab le \p r fx>  (packingq) L $
148 : :=  <table\prfx> DECIMAL\INTEGER $

BEGIN <dtid\sidpls> END

18 149 <dti\decl> ::= ITEM NAME <dti2> <packingq> $
<const\listq>

19 50 <dt i2> ::: <i\desc2> <integer> <integer>
51 ::: Al <integer> <su> <dti3>

20 52 <d t i3>  : :=  <plusmin> <integer> <dti14>
53 : :=  (Integer> <dt i14 >
514 : : =  <dt i >

21 55 <dt i14 > : :=  R <d t i5>
56 ::: <dt i5>

22 57 <d t i5 >  ::: R ANGE\PRFX <numeric> < d t i6>
58 ::: <dt i6>
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23 59 <dti6> ::= <integer> <integer>

214 60 < d t i d \ s i d >  : :=  <d t i \dec l>
61 : : =  <str\i\decl>

25 62 < d t i d \ s i d p ls> : : :  <dt id\sid>
63 ::= <dtid\sidpls> (dtid\sid>

26 64 <exch\stat> ::= <variable> <variable> $

2 7 65 <f>  ::: <f> OR < 12>
66 : : =  < 12>

28 67 <12> : : =  <12> AND < 13>
68 : : =  <f3>

29 69 < 13> : :=  NOT < f 3 >
70 :::

30 71 <f14> ::= <f5> <r e l \ su f x st r >
~-

31 72 <fS> ::~ <f5> <plusmin> <f6>
73 : : =  <16>

32 714 <f6> : : =  < f 6 >  <m u l t d i v >  <f7>
75 ::: <f7 >

33 76 <17> < 17> ** <18>
77 ::: <f7> LPA R \STAR <f> STAR\RPAR
78 ::~ LPAR\SL S H < f >  SLS H \ RPAR
79 ::= <18>

314 80 <f 8 > : :=  C <f> )
81 ::: <constant>
82 := < func \ re f>
83 : : =  <var iable>
8 4  ::: <plusmin> <f8>

35 85 <fIle\size> : : :  <constant>

36 86 ( f pl s>  : :=  < f >
87 : : :  <fp l s>  , <1>

37 88 <fp l sdo t>  : :=  NA ME C ’OT
89 :::
90 ::: (fplsdot> , <f>
9 1 ::: < fp l s d o t >  , NAMED O T

38 92 < f st r d ot >  :::
93 ::= <fplsdot>

83
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39 914 <func\ref> ::= NAME ( < f s t rdo t>

140 95 <goto\ formul a> ::: NAME <xq >

141 96 <goto\stat> : : =  GOTO <goto\formula> $

142 97 <I\desc> : :=  Al <integer> <su> <os\intq> <rq>
<rangeq>

98 ::: (j \desc2>

143 99 <i\desc2> : :=  B
100 : : =  F <rq>
ioi  : :=  S <integerq> <statu spi s>
102 ::: <cht> <integer>

14 14 103 <inout\stat> ::= INO UT NAME <iolist> $
1014 ::= OPSH INOUT NAME <iolistq> $

145 105 <inputs> ::= (inputs> , <oname>
106 ::= (oname>

146 107 <inputsq> ::: **empty*I
108 ::= <inputs>

417 109 <insdl> ::= **empty**
110 ::= <goto\formula >

‘48 11 1 <insdlpls> ::= (insdl>
112 ::: <insdlpls> , <inzdl>

449 1 13 <integer> : :  DECIMAL\INTEGER
11 14 : : =  OCTAL\INTEGER

50 115 <integerq> ::= “empty”
116 ::: <integer>

51 117 <intpls> : : :  DECIMAL\INTEGER
1 18 : : :  <intpls> DECIMAL\INTEGER

52 119 <iolist> :::
120 ::: <iolist> , (f>

53 121 <iolistq> ::= “empty”
122 ::= <iolist>

544 123 (itsdl> : :=  (os\const> <goto\formula)

55 1214 <itsdlpls) ::= <itsdl>
125 ::= <itsdlpls> , <itsdl>

814
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56 126 < l a be l s tr >  ::~ “empty”
12 7 : : :  <labe l s t r>  NAMEDO T

57 128 < l e t t e r >  : : =  Al
129

.5 
130 ::: CH
13 1 ::: DMN
132 : : =  EGJ KO QWX Y Z
133 : :=  F

• 134 ::~~ L
135 : : =  P
136 B
137 ::: S
138 : : :  T
139 : :=  U

* 1140 : : =  V

58 14 1  <m a i n \ p r o g >  : :  START $ <body > TERM <n am eq> $

59 142 < m u l t d i v >  ::: *

143 : : =  /

60 1414 <namepls> NAME
1115 : : :  <namepis> , NAME

61 1L 4 6 < n a m ep l sp l s >  : :=  <n a m e p l s >
1147 : : =  <n a m e p i s p i s>  <n amep l s >

62 1148 < n a m ep l s st r >  : :=  “empty”
1 4 9  : : =  <n a m e pl sp l s>

63 150 <nameq> ::: “empty”
151 : : =  N A M E

614 152 <numeric> ::~ FIXED\CONSTANT
153 ::: FL OAT ING \CONSTANT
154 ::= <integer>

65 155 <oei \dec l> : : =  ITEM NAME <i\desc> $
<con s t \l i s t q>

66 156 <oeid\ sod> ::: <oei \dec l>
157 : : =  <over l ay \dec l>

67 158 (oe id \ sodp ls>  ::: <oeid\sod >
159 : : :  <o e i d \ s o d pl s>  (oeid \ sod>

68 160 <on ame> ::~ NAME
1 61 : :=  NAMEDOT

85

- -  -~~~~—- -. -- -5- S ~~~~~~



.,

69 162 <onamep ls> : : =  <oname>
163 ::= <onamepis> , <oname)

70 1641 <orif\llst> ::= (label str> OR1F (f> $ <stat>

71 165 <ori f\ l i s t pl s>  : :=  (o r if \l i s t>
166 <orif\listpls> <orif\list>

72 167 <originq> ::= “em pty”
168 <integer> =

73 169 <os\const> : :=  + <constant>
170 ::= — <constant>
171 ::: <constant>

714 172 <os\intq> ::= (integerq>

* 
173 ::~ <plusmin> <integer>

75 1 711 <out putsq> ::= “empt y”
- 175 : :=  = <inputs>

76 176 <ov erlay\decl> : OVERLA Y <originq> <namepl s>
<namep lsstr> $

77 177 <p ackingq> “empty”
178 ::: DMN

78 179 <parameters> ~~em pty~ *
180 : :=  ( <inputsq> <outputsq> )

79 181 <p c a l l\ s t a t >  ::: NAME <a \p \ l>  $

80 182 <pddpst r> ::~ “empt y”
183 ::= (pddpstr> <dccl>

81 1841 <plusmin> +

185 : :=  —

82 186 <pq) “empty”
187 P <os\const>

83 188 <range q> ::: *empty **
189 ::= RANGE\PRFX <numeric>

814 190 <record\si ze> ::: <numeric>

85 19 1 <r e l \ s u f xst r )  : : =  “empt y”
192 : :=  < r e l \ su f x s t r >  REL \OP (15>

86 193 < r e t u r n \ s t a t >  : :=  RETURN $

86



87 1914 <r q> : :=  “empt y”
195 B

88 196 < st a t >  :: ASS ER T\ASSUM E < f >  $
197 : : =  D I R E C T  J O V I A L
198 ::~ FOR < l e t t e r >  <c o n t r o l s >  ~
199 ::: IF < f >  $
200 : : =  < a l t \ s t a t >
201 <assign\stat>
202 : : =  <cstat>
203 :~~ <exch\stat>
204 : : =  <go to \ s t a t >
205 : :~ <inout\stat>
206 : : =  <pcall\stat>
207 <rtturn\ stat>
208 : : =  <stop\stat>

- ~~. * 209 : : :  <test\stat>

“1 89 210 <status pls> : : =  STATUS\CONSTANT
211 ::~ <statu spis> STATUS\CONSTANT

90 2 12 < st o p \ s tat >  : : =  STOP $
213 : :=  STOP NP .ME $

91 21 11 < st r \ i \ d e cl>  : : =  S T R I N G  N A M E  < i \ de s c 2 >  < i n t e g e r >
< i n t e g e r >  < p a c k : n i g - i > < i n t e g e r >
<integer> t < c cr i s t \ l i  s t q >

215 : : =  S T R I N G  N A M E  Al  < i n t e g e r>  <su>
< st r \ ca ses>  $ < c o n st \ l i s t q >

92 2 16  <~ t r \ ca ses> : : :  <plusm in> <integer> <str\casesl>
21 7 < in t ege r>  < st r \ c a se sl >
218 : : =  <str\cesesl>

93 219 <str\ca~ es1> ::= H <str\ca ses2>
220 ::= Kstr\ca ses2>

94 221 <str\cases2> RANGE\PRFX < n u m e r i c >  < in t ege r>
<i nteger> < s tr \ c ase s3>

222 <integer> <integer> <str\cases3>

95 223 < st r \ c a r e s 3>  ::: D MN < in t ege r>  < i n t e g e r >
22 14 : : : < r ) t e g e r >  <integer>

96 225 <su> : : =  S
226 U

97 227 < sub\pro g> <subpro g \p r fx> <bod y > TERM $

98 22 8 < c u b p r o g \ p r f x >  : : :  CLOS E N A M E  $ START $
22 9 : ~-~f A B T  ~ROC N APE (p r ~rT1 e’ err> $
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99 230 (table\pr fx> ::: TABLE <nameq> <table\~1zeq>
<tssq>

100 231 <table\3ize> ::: <vr> <numeric>

101 232 <table\sizeq> ::= “empty”
233 ::= (table\si ze>

102 234 <test\stat> ::: TEST $
235 ::: TEST <letter> $

103 236 <t33q> ::: “empty”
237 ::= P
238 ::=S

104 239 <variable> ::= ENTRY ( NAME <x>
240 ::~ FUNC\MOD < xq> ( <variable> )
241 ::~ NAME
242 NAME <x>
243 ::: NAME LPAR\DOLL <1’> <1’>

DOLL\RPAR
2414 ::: NAME LPAR\DOLL RANGE\PRFX <f )

DOLL\RPAR
245 <letter>

105 246 <vr> ::= R
247 ::: V

106 248 <x> ::: LPAB\DOLL <fpls> DOLL.\RPAR

107 249 <xq> ::= “empty”
250 ::~ <x>
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2. Diagnostics

ERASING RULES 14 7 12 18 92 107 109 115 121
126 148 150 167 174 177 179
182 186 188 191 1914 232 236
249

LEFT—RECURSIVE RULES 13 14 33 63 65 67 72 74 76 77
87 90 91 105 112 118 120 125
127 145 147 159 163 166 183
192 211

RIGHT—RECURSIVE RULES 69 84

SELF-EMBEDDING RULES 2140

3. Cross References

a. Nonterminals

THE SYMBOL OCCURS IN LHS OF AND IN RHS OF

<a\p\l> 14 5 181

<alt\stat> 6 200

<aopl> 7 8  5

<assign\sta t> 9 201

<bch> 10 11 37

<body> 12 13 14 13 14 29 141 227

<cht> 15 16 102

<oonst\list> 17 19 30

<const\listq> 18 19 34 38 149 155 2114
215

<constant> 20 21 22 81 85 169 170 171

<controls> 23 24 198

<controls2) 25 26 27 28 23 214

<cstat> 29 36 40 202

• <dcl> 30 31 32 33

89
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<dclplz> 32 33 17 33

<dccl> 34 35 36 37 38 39 13 183
40 141 42 43 1114 145
46 47 48

<dti2> 50 51 49

<dti3> 52 53 51; 51

(dti14> 55 56 52 53 514

<dti5> 57 58 55 56

<dti6) 59 57 58

<dti\decl> 119 60

<dtid\sid> 60 61 62 63

<dtid\sidpls> 62 63 148 63

<exch ¼stat> 64 203

65 66 6 9 214 26 27 27
28 28 28 35 65 78
77 80 86 87 89 90
119 120 1 614 196
199 2143 2143 2414

<f2> 67 68 65 66 67

<f3> 69 70 67 68 69

• < fll > 71 70

<f5> 72 73 71 72 192

• < 16> 714 75 72 73 714

<17> 76 77 78 79 714 75 76 77

<t8 > 80 81 82 83 84 76 79 814

<file\8ize> 85 37

< tpl~ > 86 87 87 2148

<fp l8dot> 88 89 90 91 90 91 93

90
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<fstrdot> 92 93 5 914

<func\ref> 914 82

<goto\formula> 95 96 110 123

<goto\stat> 96 2014

<i\desc> 97 98 314 35 155

<i\desc2> 99 100 101 102 50 98 21 14

<inout\stat> 103 1014 205

<inputs> 105 106 105 108 175

<inputsq> 107 108 180

<insdl> 109 110 11 1 112

<insdlpls> 111 112 42 112

<integer> 113 11 14 50 50 51 52 53 59
97 102 116 1511
168 173 214 215
216 217 221 221
222 223 223 22 14
224

<integerq> 115 116 101 172

<intpls> 117 118 34 118

<b u st> 119 120 103 120 122

<iolbstq> 121 122 1014

<itsdl> 123 1214 125

<lt sdlpl s> 1214 125 143 125

<labelstr> 126 127 114 127 1611

<letter) 128 129 130 131 132 198 235 2145
133 1314 135 136 137
138 139 1140

<main\prog> 114 1 2

<multdiv> 1 142 143 74;

91
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<namepls> 11114 145 145 114 6 1147 176

<nameplspls> 1146 1147 1147 1149

<nameplsstr> 114 8 114 9 176

<nameq> 150 151 1111 230

<numeric> 152 153 1514 22 57 189 190 221
231

<oei\decl> 155 116 156

<oeid\sod) 156 157 158 159

<oeid\sodpls> 158 159 146 159

<oname> 160 161 105 106 162 163

<onamep] s> 162 163 8 163

<orif\ list> 1614 165 166

<orif\listpls> 165 166 6 166

<originq> 167 168 176

<o~\const> 169 170 171 31 39 123 187

<os\intq> 172 173 97

<output sq> 1714 175 180

<overlay\dec].> 176 1414 157

(pacld ngq> 177 178 146 147 149 2114

<parameters> 179 180 140 229

<p ca ll \s tat > 181 206

<pddpstr) 182 183 110 183

tp lu smin> 1814 185 52 72 811 173 216
• <pq> 186 187 38

<prog> 2 3  1

<rangeq> 188 189 97
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<record\size> 190 37

<rel\sufxstr> 191 192 71 192

<return\stat) 193 207

<r q> 1914 195 97 100

<stat> 196 197 198 199 200 6 114 1614
201 202 203 2014 205
206 207 208 209

<statuspls> 210 211 101 211

<stop\stat> 212 213 208

<str\cases> 216 217 218 215

H” <str\casesl> 219 220 216 217 218

<str\cases2> 221 222 219 220

<str\cases3> 223 224 221 222

<str\i\decl> 2114 215 145 61

<su> 225 226 51 97 215

<sub\prog> 227 3

<subprog\prfx> 228 229 227

<table\prfx> 230 146 147 148

<table\size> 231 233

<table\sizeq> 232 233 230

<test\stat> 2314 235 209

<tssq> 236 237 238 230

<variable> 239 2140 2141 2142 243 9 64 6~4 83 2140
21114 2115

<vr> 2146 2i4 7 37 231

248 239 2142 250

<xq) 214 9 250 95 2140
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b. Terminals

THE SYMBOL OCCURS iN THE RHS OF

$ 6 9 3 1 4 35 36 37 38 39 140 141 142
143 146 147 148 149 614 96 103 104
141 155 164 176 181 193 196
198 199 212 213 214 215 227 228
229 2314 235

5 25 42 143 80 914 180 239 2140

5 25 ~42 143 80 914 180 239 2140

‘ 114 2

76

+ 169 1814

27 28 87 90 91 105 112 120 125
145 163

— 170 185

214 3

/ 114 3

= 8 9 142 143 123 1146 147 168 175
198

614

Al 51 97 128 215
“SPECIAL SYMBOL”

ALL 25

r AND 67

ARRAY 314

ASSERTINOUT 35 “SPECIAL SYMBOL”

ASSERT\ASSUME 24 196 “SPECIAL SYMBOL”

• B 10 99 129

• 
: BEGIN 29 146 48

~~

-
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BEGIN\ 17

CH 11 15 130 “SPECiAL SYMBOL”

CHARACTER\CONSTANT 20

CLOSE 36 228

DECIMAL\INTEGER 148 113 117 116

DIRECT 197

DMN 131 178 223
“SPECIAL SYMBOL”

-• 
DOLL\RPAR 2113 2414 2148

EGJKOQWXYZ 132 “SPECIAL SYMBOL”

END 6 1 7 29 146 48

• ENTRY 239 “SPECIAL SYMBOL”

F 100 133

FiLE 37

F1LE\STATES 37

FIXED\CONSTANT 152

FLO A T ING\CONSTANT 153

FOR 198

FIJNC\MOD 2 140 “SPECIAL SYMBOL”

GOTO 96

H 4 IF 199

IFE ITH 6

1NOUT 103 1014 “SPECiAL SYMBOL”

ITEM 38 39 149 155

JOVIAL 197

L 447 134

95
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LPAR\DO LL 214 3 214 14 2 148

LPAR\SL. SH 78

LPAR\STAR 77

NAME 25 314 36 37 38 39 40 141 142 143
143 149 914 95 103 1011 114 14 1145 151
155 160 181 213 21 14 215 228 229
239 2141 242 2143 214 14

NAME DOT 88 91 127 16 1

NOT 69

OCTAL\INTEGER 1114

OPS H 1014 “SPECIAL SYMBOL”

OR 65

• ORIF 1611

OVERLA Y 176

P 135 187 237

PROC 40 229

PROGRAM 4 1

R 55 136 195 219 2146

RANGE\PRFX 57 189 221 21414

REL\OP 192 “SPECIAL SYMBOL”

RETURN 193

S 101 137 225 238

SLSH\RPAR 78

START 14 1 228 229

STAR\RPAR 77

STATUS\CONSTANT 21 210 211

STOP 2 12 2 13

• 
96
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STRING 2 1 14 2 15

SWITCH 142 143

T 16 138

TABLE 230

TERM 1~4 1 227

TEST 23 14 235

U 139 226

V 114 0 214 7

c. Soecial Symbols
Al : A I

r - 
• AS SERT INO UT : ASSEET IN

ASSERT \A SSUM E : ASSUM E ASSERT
CII : C H
DMN : D M N
EGJKO QWXYZ : E G J K O Q W X Y Z
ENTRY : ENTRY ENT

• FUNC\M OD ABS POS NENT NW DSEN BIT BYTE ODD LOC
CHAR MANT

INOUT INPUT OUT PUT
OPS H OPE N SHUT
REL\O P : EQ GQ GR LQ LS N Q

97 
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• Appendix B

TABLEAUX GLOSSABY

(Aster isks  denote optiona l a rgumen t s .)

ALPHA The CAR of th is  va r i ab le  is the l ist  of ac t ive  ALPHA nodes .  The CDR
is the l ist  of deferred ALPHA nodes. See a lso:  F O R M U L A T Y P E ( F ) .

A L G E B R A ( C )  The algebraic s impl i f ie r  is applied to the formula at  node C ,
which must be an ancestor of CURRENT.  If the resu l t  is T , i t  is
appended to the tree below CURRENT ( see PHOOFGO for d e t a i l s)  and closes
the open leaves accessible from CU R RENT.  if the result  is NIL , the user
is so informed ; this means tha t the node is useless in complet ing the
proof.  Otherwise , the user is asked whether  the s impl i f i ed  form should
be appen ded to the tree and may respond w i t h  N (fo r No ) or Y or 0 (for
Yes or O K ) .

• ANCEST O R ( C )  Is C an ancestor of CU R RENT?
AL I ST ( C 1 C2 )  Re tu rns  the i n s t ant i a t i o n  ( i f  a n y )  tha t may be used as a second

• argumen t to INSTANCE to in s t a n t i a t e  the formula  at node Cl so tha t  the
result  contradic ts  the formula a t  node C2.

• A R I T H ( F  NODES ) App ly  the Fresburger  procedure to the asser t ion t h a t  the
conjunction of the negat ion s  of the fo rmu lae  at the  nodes specif ied by
the  l ist , NODES , (each  node of which  snou ld be an ancestor of C U R R E N T )
impl ies  F. if t h i s  assert ion is proved , the negat ion of F is appended
to the tree below CURRENT . if the asser t ion is not proved , a possible
counterexample is given . F is a formula , e i t h e r  typed in b y the user ,
or supplied by, e . g . ,  (GETFO R MULA c ) .  The f i rs t  opt ion  :s useful  for
der iv ing  in te rmedia te  resu l t s  not appear ing  in the t a b l e au .

A R I T H C ( C 1  C2 . . . )  This is equ iva l en t  to
( A R ITH ( GETFORMULA CURRENT ) ‘ ( C l  C2 . . .

AUTOMATIC if AUTOMATIC is NIL , then each PROOFGO wi l l  perform a s ingle
tableaux operation ; otherwise , PROOFGC w i l l  repea t as long as there  is
an unused ALPHA , DELTA , or BETA node.

A V ( )  For each unclosed lea f C , type  the message (FROM NODE C) and then do a
V 1S 1BLE (C) .

BETA The CAR of t h i s  v a r i a b l e  i~i ~he l i s t  of a c t i v e  BETA nodes .  The CDr is
the l i s t  of defer red  BETA nodes .  See a lso:  F O R M I J L A T Y P E ( F ) .

CURRENT Thi s  is the  node in the t a b l e a u  t ha t  wi l l  be used in the n ex t  t ree
augment ing  operat ion . For d e t a i l s , see P R OOFGO , ALGEBRA , A R ITH , AR1 TH C ,
I NSTANCE , a nd INVOKE .

CURRENTTYPE Th i s  is the type of the  nex t  operation t c ~ be pe rformed . It i~’
equa l to F O R M U L A T Y P E ( C U R R E N T )  unless a ca l l  h a s  jus t been made on
ALGEBRA , A R I T H , A R I T H C , INSTANCE , or INVOK E .
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DEFER(C) Give node C “deferred” status; automatic PROOFGO wi l l  not consider
it , and VISIBLE will hide it. If C is CURRENT , th en CURRE N TT YP~’ is set
to NIL.

DELTA The CAR of this variable is the list of active DELTA nodes. The CDII
is the list of deferred DELTA nodes. See also : FORMIJLATYPE (F).

DEFAULTNODES This integer determines the maximum number of nodes that will
be permitted in the tableau begun by a NEWPROOF .

• FATHER (C) Returns — 1 if C is the ROOT.

FILTERS If K is an element of th is list, then SHOW will suppress pairs
(K . V) in printing nodes. See SHOW for a list of the possibile
settings.

“GRMULATYPE(F) The types are ALPHA (OR , IMPLIES , NOT—AND , NOT—NOT), BETA
(AND , NOT-IMPLIES, NOT—OR ), GAMMA (FORSOME , NOT—FORALL ), DELTA (FORALL ,
NOT-FORSOME), NONLOGICAL (everything else).

GAMMA The CAR of this variable is the list of active GAMMA nodes. The CDII
is the list of deferred GAMM A nodes. A GAMMA node is automatically
deferred by a PROOFGO from that node. See also: FORMULATYPE(F).

GETFACT(K ) Returns the dotted pair (K . V), if any ,  such t hat (K . V ) is
recorded at an anc estor of CURRENT , and no pair (K . V’) is recorded at
any more recent ancestor of CURRENT.

GETJUSTIFICATION (C) Returns the JUSTIFICATI ON , if any,  of node C. This is
equivalent to (CADR (LOCALGETFACT ‘JUSTIFICATION) C).

GETFORMULA (C) Ret urns the formul a at node C.
HCSIZE This is the size of the HCONS hash array. A REHASH(N) sets HCSIZE to

TABLES IZE (N ) , a twin prime greater than or equal to N. Note that
TABLESIZE(TABLESIZE(N))=TABLESIZE(N).

IDENTITY(C) Invoke the identity substitution rule. C must be either an
ancestor or a descendant of CURRENT , an d th e formula at C must be a
negated universally quantified identity. Both EQ and 1FF are acceptable
identity relations. Refer to the formula at CURRENT as F. If C is a
descendant of CURRENT , a NEXTNODE(C) is automatic . If there is exactly
one instance of the right— or left—hand side of the identity in F, the
only possible substitution is made; the result becomes NEWFORM , and the
JUSTIFICATION becomes IDENTITY. The NEWFORM is pretty—printed , and the
user may do a PROOFGO to append it below (the new) CURRENT. If more
than one substitution is possible , the user is asked to designate a
subset of the possibilities and the designated substitutions determine
the NEWFORM.

INSTANCE (N ODE ALIST ) Cons truc t an ins tanc e of the formula at NODE , which
must be an ancestor of CURRENT . The user specifies quantifiers to be
skolemized or instantiated in either of two ways. If ALIST not NIL ,
it is assumed to specify the names of the indicial variable’ to be
instantiated and the instantiations desired . If ALIST ~s NIL , the
system asks the user which indicials are to be instantiated and what
instantiations are desired . Following instantiation , the resulting

100 

--—- - —•— -~~~~
--••

~~~~~~~~~~~~
-• 



formula is pretty—printed on the user’s terminal. At this point NEWFORM
is the instantiation , and JUSTIFICATION is (CONS ‘iNSTANCE ALIST). The
user may ca ll PROOFGO to a ppend NEWFORM to the tab leau below CURRENT (or
the the user can forget the instant iation by issuing a NEXTNODE , calling

• INSTANCE again , etc.).

INVOKE (LEMMA ) The universal closure of LEMM A is ins tant ia ted  in the second
way described under INSTANCE (the nul l  ALIST case) .  NEWF ORM becomes the
negation of the instant ia t ion , a nd JUSTIFICATION becomes ( CONS ‘LEMMA

• ALIST ) .  The user proceed s by cal l ing PROOFGO (or discarding the
ins tan t ia t ion) as described under INSTANCE.

JUSTIFICATION This is the jus t i f ica t ion  ( see SHOW for a list of the

A 
possibilities) for the operation to be done on CURRENT .

LASTN ODE This is the number of the node most recently added to the tableau;
it is set to the literal atom UNDONE if that  node has been excised by
UNDO .

• LEAFP ( C) Is C a leaf?
LEFTBROTHER (C ) Returns — l if C is leftmost of the brethren .
LEVEL ( C )  Returns  the depth of C in the tableau.
LMB ( C ) Returns  the leftmost brother of node C.
LOADP R OOF (FILE ) The argumen t FILE is not evaluated . The f i le  F1LE .PRF must

• exist on the user ’ s directory.  It is assumed that  this f i le  was created
by a call to SAVEPROOF , and the proof state  at the time of the SAVEP R OOF
is reinstated .

LOCALGETFACT (K C) Returns  the dotted p ai r  (K . V ) ,  if any ,  recorded at node
C.

MAKETHM (X) The result is the formula X formatted as a lemma and suitable as
an argument to INVOKE . MAKETHM is normal ly  cal led au toma t i ca l l y  when a
proof’ is completed successfully.  It may also be used direct ly  by the
user , but it must be noted tha t  the use of unver i f ied lemmas can
inva l ida te  an otherwise sound proof.

NEWPR OOF ( T RM NAME ’) I n i t i a l i ze  a tableau for a proof of THM. lf any  of the
symbols in THM are not known to the system , it will ask that they be
declared as TERM S or FORMULAs. If the proof succeed s in closing a l l
branches , then NAME is set to M A K ETH M ( TH M ) .  Several parameters  may be
chan ged from th eir normal valu es prior to t his call : the parame ter
HCSIZE controls the size of the initial hcons hash array and should be
set to 2000 for proving large formulas; the parameter DEFAULTNODES
controls the  maximum number of nodes t h a t  can be generated during the
course of a proof and should be set to 300 or 1400 for large formulas .

NEX TN O DE ( C) Consider the node C , which  becomes the CURRENT node. CURRENTTY P E
is set to F O R M U L A T Y P E ( C ) .  If CURRE N TTYPE i s  ALPHA , BETA , GAMMA , or

• DELTA , a P R OOF GO () wil l  augment the tableau according to the appropr ia te
tablea ux ru le .  A l t e rna t ive ly ,  the user may proceed by invoking some

• o ther  deduc t ive  procedure such as ARITH , ALGEBRA , e tc .
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NONLOGICAL The CAB of this variable is the list of active nonlogical nodea,
i.e., nodes containing formulas not of one of the forms (AND . . . ),  (OR
...), (I MPLIES p q ) ,  (FORALL x p ) ,  (FORSOME x p), the negation of one of
these forms , or (NOT (NOT p)).

• OFFSPRING (C) Returns the list of nodes whose SOURCE is C.

• ONLYLEAVES If this variable is bound and is not NIL, it controls the
augmentation of the tableau. See PROOFGO for details.

PPRINSKEL (C) A list structure showing the tree structure of the subtableau
rooted at C is pretty—printed on the user’s terminal.

PF(C) Causes the formula at node C to be pretty—printed on the user’s
terminal .

PROOFGO (TERM’) A ugment the tree according to the CURRENTTYPE. If ONLYLEAVES
is bound to a list of nodes , then new nodes are added below leaves in
the intersection of REACHABLE UNCLOSEDLEAVES () and ONLYLEAVES ; if
ONLYLEAVES is N I L  or unbound , new nodes are added below all reachable
unclosed leaves. If CIJRRENTTYPE is GAMMA , then GE TFORM I LA ( CU RR ENT ) is

• instantiated to the user—supplied parameter TERM ; otherwise , TERM may be
omitted . PROOFGO is automatic after a successful call of ARITH , AR ITHC ,
or ALGEBRA . If CURRENTTYPE is ALPHA , BETA , or DELTA , PROOFGO cont inues
automatically except when the parameter AUTOMATIC is NIL.

REACHABLE UNCLOSEDLEAVES (C’) Returns a list of the unclosed leaves below C,
• or , if’ C is omitted , below CURRENT.

REHASH (N) To be called when HCONSARRAY overflows . HCSIZE is set to
T A B L E S I Z E (N) , a twin prime not less than N. After it returns , the last
top—level tableau command should be repeated——it will not have been
correctly completed .

RIGHTBROTHER (C) Returns — 1 for a rightmost brother; otherwise, the rightmost
brother of C.

RIGHTSON(C) Returns — 1 if C is a leaf; otherwise , the rightmost son of C.

SA VEPROOF(FILE) The argument FILE is not evaluated . The state of the proof
is saved on the f i le FILE .PRF . It may be reinstated by calling
LOA’DPROOF . Note that  pr in t ing pa rameters , such as FILTERS , are not
saved .

SHOW(C NUM’) The subtableau rooted at node C is output . If NUM is T , then
only node numbers are typed . Otherwise , the f ormula at eac h node is
output along with the <Key :Value> pairs stored at the node for each KEY
not an element of the controlling parameter FILTERS. The default value
of NIL su ppr esses typing of the keys INSTANCE , CLOSED , JUSTIFICATION ,
SOURCE , and OFFSPRING. The meanings of these keys ar~ as f o l lows :
INSTANCE : the term that was substituted for the indicial variable in the

formula at the SOURCE to get this formula .

CLOSED: the number of a node which is an ancestor of this node and
contains a formula contradicting this formula .
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J U S T I F I C A T I O N : the name of  the deduct ive mecha nism an d node numbers of

any hypotheses used in obtaining this formula from its SOURCE ,
e.g., AR1TH , ALGEBRA, INSTANCE , IDENTITY , LEMM A , or TABLEAUX.

SOURCE: the node from which this node was derived .

OFFSPRING:  the numbers of  any nodes that hav e been der ived f rom th is
node.

SONS(C) Returns the lists of sons of node C.

SOURCE(C) Returns the node from which node C was derived .

UNCLOSEDLEAVES This is a list of the leaves of open branches of the tableau.
Each time new nodes are added , it is modified appropriately. See also:
WHA T 0.

UNDEFE R (TYP ES ) Unde f er all nodes in TYPES , a subset of  (ALPHA BETA GAMMA
DELTA NONLOGICAL). If TYPES is NIL , undefer everything .

UNDO ( C) C must be a node ( other than the root) tha t the user wants to excise
from the tree. To do this soundly, all descendants of FATHER(C) must be
undone as well. The user is given this list and must confirm that these
nodes are all to be deleted . If this is confirmed , the nodes are
deleted and all nodes from which they were derived are restored to their

• type lists (i.e., ALPHA , BETA , etc.).

V1SIBLE(C DF’ NUM’) Print nodes between C and ROOT, starting with C.
• Normally, only visible (i.e. useful and undeferred ) nodes are printed .

• 
. Setting DF to T causes deferred nodes to be printed , too. Setting NUM

to T causes only node numbers to be printed . If the CURRENT node is
• printed , it is marked with  the symbol “p ” .

W H A T ( )  Type a s ta tus  report giving CURRENT , LASTN ODE , CUR R ENTTYPE , ALPHA ,
BETA , GAMMA , DELTA , NONLOG 1CAL , and UNCLOSEDLEAVES . Any of ALPHA , BETA ,

F GAMMA , DE LTA , or NONLOGICAL that  are empty are omitted . If ’ nonempty,
they are typed in the format ((Ni N2 . . .)  Dl D2 . . .)  where the Ni are
act ive  nodes of that  type and the Di are deferred nodes. The out put
format of UNC L.OSEDLE AVE S is ( ( R i  R2 . . .)  U i  U2 . . .)  where al l  the Ri
and Ui are unclosed leaves but only the RI are reachable from CURRENT.

WFF ( F )  Is the corm~ la F syn tac t i ca l ly  wel l—formed?

L 
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• Appendix C

MULTICS Verificat ion Run

1. The Search Program
• START $

ITEM VV F $
ITEM NN I 1O U $
ITEM INDEX 1 1 O U O . . .  1 0 0 0 P O $

• 
- 

ITEM LOCN I 10 U 0 ... 1000 $
ITEM F L G B P O $
ARRAY AA 1000 F $
ASSERTIN T $
ASSEBTOUT (FLG EQ 0)

AND (iNDEX EQ NN+l )
• AND NOT(FORSOME (J, 0 LQ J AND J LQ NN

AND AA ($J$ )  EQ VV ) )
OR (FLG EQ 1)

AND (LOCN GQ 0)
AND (LOCN LO NN )
AND AA ( $LOCN $) EQ VV $

L i .  ASSERT FLG EQ 0
A ND
(INDEX GO 0) AND (INDEX LQ NN+l) AND
FORALL(J , NOT( 0 LQ J AND J LS INDEX

AND AA ( $J$) EQ V V ) )  $
IF INDEX EQ NN+i $ GOTO L3 $
IF AA($INDEX$) EQ VV $

BEGIN LOCN:INDEX $ FLG=i $ GOTO L2 $ END
INDEX = INDEX + i $
GOTO Li $

L2. ASSERT (FLG EQ 1) AND ( INDEX EQ LOCN )
AND (0 LQ LOCN) AND (LOCN LQ NN)
AND AA ( $LOCN$ ) EQ VV $

• GOTO OUT $
• L3. ASSERT FLG EQ 0 AND

(INDEX EQ NN+i) AND
NOT(FORSOME(J , 0 LQ J AND J LQ NN AND

AA ($J$) EQ V V ) )  $
OUT. ASSERT (FLG EQ 0)

• • . AND (INDEX EQ NN+i )
AND NOT(FORSOME(J , 0 LQ J AND J LQ NN

AND AA ( $J$) EQ V V ) )
OR (FLG EQ 1) AND (0 LQ LOCH ) AND (LOCN LQ N N )

AND AA ($LOCN$) EQ VV $
TERM $

_ T _ 
_ _



2. Abstract E~~~ ~~ ~~~ Pro gra m

(MAINPROGRAM NIL
(ITE2~1 VV (F NIL) NIL NIL)
(ITEM NN (I 10. U NIL NIL NIL) NIL NIL)
(ITEM INDEX (I 10. U NIL NIL (0. 1000.))

0. NIL)
( iTEM LOCN (I 10. U NIL NIL (0 .  1000.))  NIL

N IL)
(ITEM FLG (B) 0. NIL)
(ARRA Y AA ( 1 0 0 0 . )  (F NIL )  N I L )
(ASSERTIN T )

• (ASSERTOUT
(OR (AND (AND (EQ FLG 0.)

(E Q INDEX (PLUS NN 1 .) ) )
(NOT ( FORSOME J

(AND (AND (LTQ 0. J)
(LTQ J NN))

L • (EQ (AA (J))
• VV)))))

(AND (AND (AND (EQ FLG 1.)
(GTQ LOCN 0.))

(LTQ LOCN NN))
(EQ (AA (LOCN)) V V ) ) ) )

(LABEL Li)
(ASSERT (AND (AND (AND (EQ FLG 0.)

(GTQ INDEX 0.))
(LTQ INDEX (PLUS NN 1.)))

(FORALL J
(NOT (AND (AND (LTQ 0. J)

(LT J I N D E X ) )
(EQ (AA ( J ) )

(IF (EQ INDEX (PLUS NN 1 .)) (GOTO L3 NIL))
(IF (EQ (AA (INDEX)) VV )

(BEGIN ( : :  LOCN iNDEX)
( : :  FLG 1.)
(GOTO L2 NIL)))

( : -  INDEX (PLUS INDEX 1 .))
(GOTO Li NIL)
(LABEL L2)
(ASSERT (AND (AND (AND (AND (EQ FLG 1.)

(EQ INDEX LOCN))
(LTQ 0. LOCN))

(LTQ LOC H NN))
(EQ (AA (LOCN)) VV)))

(GOTO OUT N I L )
(LABEL L3)
(ASSERT (AND (AND (EQ FLG 0.)

(EQ INDE X (PLUS NN 1 . ) ) )
(NOT (FORSOME J

(AND (AND (LT Q 0. J )
(LTQ J NN))
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(EQ (AA (J))
VV ) ) ) ) ) )

(LABEL OUT )
(ASSERT
(OR (AND (AND (EQ FLG 0.)

(EQ INDE X (PLUS NH 1 . ) ) )
(NOT (FORSOM E J

(AND (AND (LTQ 0. J)
(LTQ 3 N N ) )

( EQ (AA ( 3 ) )  V V ) ) ) ) )
(AND (AND (AND (EQ FLG 1.)

(LTQ 0. LOCN ))
(LTQ LOCN NN))

( EQ (AA (L O CN ))  V V ) ) ) ) ) )

3. The Verification Conditions

A l is

(IMPLIES (AND T
(REAL VV )
(AND (INT N N )  (GTQ NN 0 . ) )
(AND (INT INDEX) (GTQ INDEX 0.)

(EQ INDEX 0 . ) )
(AND (INT LOCN) (GTQ LOCN 0.))
(A N D  (BOOLEAN FLG ) (E Q FLG 0 . ) )
(AND (ARRAY A A)

(E Q (AR RAYTYPE A A)  R E A L )
(EQ (DIMENSION AA ) 1.)
(EQ (UPPERBOUND 1. AA) 1000.)))

(AND (AND (AND (EQ FLO 0.) (GTQ iNDEX 0.))
(LTQ INDEX (PLUS NN 1.)))

(FORALL 3
(NOT (AND (AND (LTQ 0. 3)

(LT J I N D E X ) )
(EQ (AA J )  V V ) ) ) ) ) ) )

‘A 2 is

(iMPLIES
(AND (AND (AND (EQ FLG 0.) (GTQ iNDEX 0.))

(LTQ INDEX (PLUS NN 1.)))
(FOR ALL J

(NOT (AND (AND (LTQ 0. J) (LT J INDEX))
(E Q (AA 3) V V ) ) ) ) )

(A N D
(IMPLIES (EQ INDEX (PLUS NN 1.))

• (AND (AND (EQ FLG 0.) (EQ INDEX (PLUS NN 1.)))
(NOT (FORSOME J

(AND (AND (LT Q 0. J )
(LTQ J N N ) )
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( EQ (AA J )  V V ) ) ) ) ) )
(IMPLIES (NOT (EQ INDEX (PLUS NN 1.)))

(AND (IMPLIES (E Q (AA INDEX ) V V )
(AND (AND (AND (AND (EQ 1. 1 . )

(E Q I N D E X
I N D E X ) )

(LT Q 0. I N D E X ) )
(LT Q INDEX N N ) )

(EQ (AA INDEX ) V V ) ) )
(IMPLIES (NOT (E Q (AA INDEX ) V V ) )

(AND (AND (AND (EQ FLG 0.)
(GT Q (PLUS INDEX

1.)
0.))

(LTQ (PLUS INDEX 1.)
(PLUS NN i.)))

(FORALL 3
(NOT (AND (AND (LT Q 0. J )

(LT
3
(PLUS

INDEX
1 . ) ) )

(EQ
• (AA J )

‘A 3 is

(IMPLIES (AND (AND (AND (AND (EQ FLG 1.)
(EQ INDEX LOCN))

(LTQ 0. LOCN))
(LTQ LOCN N N ) )

(E Q (AA LOCN) V V ) )
(OR (AND (AND (EQ FLG 0.)

(EQ INDEX (PLUS NN 1.)))
(NOT (F ORSOM E 3

(AND (AND (LT Q 0. J )
(LT Q 3 N N ) )

(EQ (Alt 3)
V V) ) ) ) )

(AND (AND (AND (EQ FLG 1 . )
(LTQ 0. NN))

(LTQ LOC N N N ) )
(EQ (AA LOCN) VV)))))
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(IMPLIES (AND (AND (EQ FLG 0.)
(EQ iNDEX (PLUS NH 1.)))

• (NOT (FORSOME J
(AND (AND (LTQ 0. 3) (LTQ J N H ) )

(EQ (AA 3) V V ) ) ) ) )
(OR (AND (AND (EQ FLG 0.)

(EQ INDEX (PLUS NN 1 . ) ) )
(NOT (FORSOME 3

(AND (AND (LTQ 0. J)
(LTQ 3 NH))

(E Q (AA J)  V V ) ) ) ) )
(AND (AND (AND (EQ FLG 1.)

(LTQ 0. LOCH))
(LT Q LOCH N N ) )

(E Q (AA LOCN ) V V ) ) ) ) )

• A5 is

(iMPLIES (OR (AND (AND (EQ FLG 0.)
(EQ iNDEX (PLUS N H 1 . ) ) )

(NOT (FORSOME 3
(AND (AND (LTQ 0. J)

(LTQ 0 NN))
(EQ (AA J )  V V ) ) ) ) )

(AND (AND (AND (EQ FLG 1.)
(LTQ 0. LOCN))

(LTQ LOCN NN))
(EQ (AA LOCN) VV)))

(OR (AND (AND (EQ FLG 0.)
(E Q INDE X (PLUS NN 1 . ) ) )

(NOT (FOB SOME 3
( AND ( AND (LT Q 0. 3)

(LT Q J N N ) )
(E Q ( AA 3) V V ) ) ) ) )

(AND (AND (AND (E Q FLG 1.)
(G TQ LOCN 0 . ) )

(LT Q LOCH N H ) )
(E Q (AA LOCN ) V V ) ) ) ) )

I
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~4 . ~rpy~ng j~~ Vtr ~ ficat ion Conditions

• The proof is begun by setting up a tablea u to prove a l , us ing the

command

( r iewp roof a l )

The ~ystem next requests the declaration , as term or formula , of th~
sjmbc ls  appe ar in g  in a l .  in t h i s  example , the  user must declare “t” , “real” ,

“ :n t” , “boole an ” , “a r r ay ” , “ar r aytyp e ” , and “ and” as formulae  and “ vv ” , “ no ” ,

“ :ndex ” , “l ocn ” , “f lg ” , “aa ” , “dimension ” , “ upperbound ” , and “j ”  as terms.

-• When d e c l a r a t i o n  of symbols is complete , the system types

• t ab l e au  setup  completed

and the user may proceed with the proof. For al , a s u f f i ci en t  ~et o f

tableaux commands to complete the proof is

( procfgo)
(nextriode 30)
( ar :t h c  16 18 21 23 28 29 )
( r i ex tn o d e  32)
(a r i th c  2 1 23 )

Of course , to cons t ruc t  these commends , a user must  issue var ious  command s to
:nspect t h e  s t a t e  of the  p a r t i a l  t ab leau  and decide which facility to use at

tp ch step. However , the point of the present cha pter is jus t to demonst ra te
tha t a v e r i f i c a t i o n  can be run a t  RA DC—MULT ICS ; a tu to r ia l  on the use of
t a b l e a u x  in p r a c t i c e  is given in Appendix B.

The proof of a2 is the most complex of the five proofs ; it is achieved
by the sequence of’ comma nd s

(defe r 1)
(a lgebr a 1)
(ne x tno de  3 )
(proof go )
(n ex t no de  12)
(proofgo)
(riextnod e 114 )
(ar ~ thc 7 )
(r i ex tnod e  15)
(arithc 1~~)
(ne x t no de  10)

• (p roof go)
(n ex tn o de  26 )
(arithc 5 6 7 11 25)
(n ex tn o de  27 )
(proofgo)
(n ex t n o d e  30 )
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(ar itho 7)
(next node 32)
(arithc 5 6 ii )
(nextno de 33 )
(arithc 5 6 ii )
(nextn ode 37 )
(instance 4 nil)
(j:2)
( proof go)
(nextnode 4i)
( proof go )
(nextoode 42)
(arithc 37)
(nextnode 1414 )
(aritho 35)
(nextnode 20)

• (instance 14 nil)
(j : 1)
(proofgo)
(nextnode 14 7)
(proorgo)
(nex tnode 48)
(arith~ 20)
(nextnode 49)
(arithc 5 6 13 18 19)
(nextnode 50)
(ar ithe 1 8)
(nextnode 143)
(arithc 5 6 ii 28 35 36 37)))

Continuing with the proof of the verification conditions , we see that a3 and

a4 require essentially no user interaction and are proved by the commands

(newproof a3)
(proofgo)
(newproof a14 )
(proofgo ’~

Finally, the proof of aS is quite simple. It is completed by

(newproof aS)
(p r o of g o)
(nextnode ii)
(arith ‘(not (ltq 0 locn)) ‘(11))

I
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